
CSE451 Architectural Supports for Operating
Systems

Spring 2001

Gary Kimura
Lecture #2

March 28, 2001

Today

• What hardware support does the OS use?

• But before we start, some clarifications

– The book “Understanding the Linux Kernel” is NOT
required

– If I’m going too fast or my terminology is foreign to you
then please STOP me

OS and Architectures

• What an OS can do is dictated, at least in part, by the
architecture.

• Architecture support can greatly simplify (or complicate)
OS tasks

• Example: Early PC operating systems have been primitive,
in part because PCs lacked hardware support (e.g., for VM)

Architectural Features for OS

• Features that directly support OS needs include:
– Timer (clock) operation
– Synchronization (atomic instructions)
– Memory protection
– I/O control and operation
– Interrupts and exceptions
– OS protection (kernel/user mode)
– Protected instructions

Protected Instructions

• Some instructions are typically restricted to the OS
– Users cannot be allowed direct access to I/O (disks,

printers, etc) [can be done through either privileged
instructions or through memory mapping]

– Must control instructions that manipulate memory
management state (page table pointers, TLB load, etc)

– Setting of special mode bits (kernel mode)
– Halt instruction

OS Protection

• How do we know if we can execute a protected instruction?
– Architecture must support (at least) two modes of

operation: kernel mode and user mode
– Mode is indicated by a status bit in a protected processor

register
– User programs execute in user mode; the OS executes

in kernel mode
• Protected instructions can only be executed in kernel mode.

Crossing Protection Boundaries

• For a user to do something “privileged” (e.g., I/O) it must
call an OS procedure.

• How does a user-mode program call a kernel-mode service?
• There must be a system call instruction that:

– Causes an exception, which vectors to a kernel handler
– Passes a parameter, saying which system routine to call
– Saves caller’s state (PC, mode bit) so it can be restored
– Architecture must permit OS to verify caller’s

parameters
– Must provide a way to return to user mode when done

OS Kernel

User Programs

system call

trap to kernel
mode

trap handler system service routine

return to user mode

kernel mode

user mode

Protection Modes and Crossing

•Must be able to protect user programs from each other
•Must protect OS from user programs
•May or may not protect user programs from OS
•Simplest scheme is base and limit registers:

base register

limit register
Prog A

Prog B

Prog C �base and limit registers
are loaded by the OS
before starting a program

�virtual memory and segmentation are similar

memory

Memory Protection

Exceptions

• Hardware must detect special conditions: page fault, write
to a read-only page, overflow, trace trap, odd address trap,
privileged instruction trap, syscall...

• Must transfer control to handler within the OS
• Hardware must save state on fault (PC, etc) so that the

faulting process can be restarted afterwards
• Modern operating systems use VM traps for many

functions: debugging, distributed VM, garbage collection,
copy-on-write...

• Exceptions are a performance optimization, i.e., conditions
could be detected by inserting extra instructions in the code
(at high cost)

I/O Control

• I/O issues:
– How to start an I/O (special instructions or memory-

mapped I/O
– I/O completion (interrupts)

• Interrupts are the basis for asynchronous I/O
– Device controller performs an operation asynch to CPU
– Device sends an interrupt signal on bus when done
– In memory is a vector table containing a list of

addresses of kernel routines to handle various events
– CPU switches to address indicated by vector specified

by the interrupt signal

device interrupts

CPU stops current operation, switches to
kernel mode, and saves current PC and

other state on kernel stack

CPU fetches proper vector from
vector table and branches to that

address (to routine to handle
interrupt)

interrupt routine examines device database
and performs action required by interrupt

handler completes operation, restores saved
(interrupted state) and returns to user mode

(or calls scheduler to switch to another
program)

I/O Control (continued)

Timer Operation

• How does the OS prevent against runaway user programs
(infinite loops)?

• A timer can be set to generate an interrupt in a given time
• Before it transfers to a user program, the OS loads the timer

with a time to interrupt
• When the time arrives, the executing program is interrupted

and the OS regains control
• This ensures that the OS can get the CPU back even if a

user program erroneously or purposely continues to execute
past some allotted time.

• The timer is privileged: only the OS can load it

Synchronization

• Interrupts cause potential problems because an interrupt can
occur at any time -- causing code to execute that interferes
with code that was interrupted

• OS must be able to synchronize concurrent processes.
• This involves guaranteeing that short instruction sequences

(read-modify-write) execute atomically.
• One way to guarantee this is to turn off interrupts before the

sequence, execute it, and re-enable interrupts; CPU must
have a way to disable interrupts.

• Another is to have special instructions that can perform a
read/modify/write in a single cycle, or can atomically test
and conditionally set a bit, based on its previous value.

Next Time

• We now know what the hardware gives us to use, so
• How do we conceptually organize an OS to put it all

together?

