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Today’s Topics

• The I/O subsystem

• Disk partitions, volume management, and RAID

• Goal is to cover the full I/O code path, but we still need a 
few more important items

– Object management

– Worker queues and other asynchronous worker threads

• Now the full I/O code path for an open, read/write and 
close.  i.e., from the user API down to the disk and back 
again with a few stops in between

I/O Subsystem

• Some hardware features
– Polling versus as a means of controlling devices
– Direct Memory Access hardware to transfer data 

directly to and from main memory
• Features of the I/O programming paradigm

– Character-stream versus block I/O
– Sequential versus random access
– Synchronous versus asynchronous I/O

• Implementation considerations in the kernel
– Scheduling the I/O
– Buffered versus non-buffered I/O (and who’s buffer do 

we use)
– Software Caching

Disk partitions and volume management

• The disk driver’s job is to essentially present to the rest of 
the OS a virtual disk drive or volume.  
– In the simplest case the volume matches one for one 

with the actual hardware drives.
– Or the driver can divide a single drive into multiple 

volumes (or partitions)
– Or the driver can build a larger volume from multiple 

disks
• Look at WinDisk example
• Each volume is its own wholly contained file system 

structure
• Using multiple disks we can also improve reliability and 

performance and that is where RAID comes in
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RAID
The Basic Problem

• Disks are improving, but a lot slower than CPUs
• We can use multiple disks for improving performance

– By stripingfiles across multiple disks (placing parts of 
each file on a different disk), we can use parallel I/O to 
improve access time

• Striping reduces reliability -- 100 disks have 1/100th the 
MTBF (mean time between failures) of one disk

• So, we need striping for performance, but we need 
something to help with reliability / availability

• To improve reliability, we can add redundant data to the 
disks, in addition to striping

RAID

• A RAID is a Redundant Array of Inexpensive Disks

• Disks are small and cheap, so it’s easy to put lots of disks 
(10s to 100s) in one box for increased storage, 
performance, and availability

• Data plus some redundant information is striped across the 
disks in some way

• How that striping is done is key to performance and 
reliability.

Some Raid Issues

• Granularity
– fine-grained: stripe each file over all disks.  This gives 

high thruput for the file, but limits to transfer of 1 file at 
a time 

– course-grained: stripe each file over only a few disks.  
This limits thruput for 1 file but allows more parallel 
file access

• Redundancy
– uniformly distribute redundancy info on disks: avoids 

load-balancing problems 
– concentrate redundancy info on a small number of 

disks: partition the set into data disks and redundant 
disks

Raid Level 0

• Level 0 is nonredundantdisk array

• Files are striped across disks, no redundant info

• High read thruput

• Best write thruput (no redundant info to write)

• Any disk failure results in data loss
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Raid Level 1

• Mirrored Disks

• Data is written to two places

• On failure, just use surviving disk

• On read, choose fastest to read

data disks mirror copies

Raid Levels 2 and 3

• Use ECC (error correcting code) or Parity disks

• E.G., each byte on the parity disk is a parity function of the 
corresponding bytes on all the other disks

• A read accesses all the data disks

• A write accesses all data disks plusthe parity disk

• On disk failure, read remaining disks plus parity disk to 
compute the missing data

data disks parity disk

Level 5

• Block Interleaved Distributed Parity

• Like parity scheme, but distribute the parity info over all 
disks (as well as data over all disks)

• Better read performance, large write performance

0 1 2 3 PO

5 6 7 P1 4

10 11 P2 8 9

data & parity drives

File Block
Numbers

Now Back to Window NT

• Our goal is to dissect (as much as we can) the complete 
code path for doing I/O in the system.  But we still need 
two more items

• The Object Manager

• File System worker threads
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Object Management in Windows NT

• The Object Manager in Windows NT is used throughout the 
system as a tool for creating, referencing (using ref counts), 
accessing, and destroying kernel mode objects.

• These objects include, semaphores, events, file, memory 
sections, etc.

• In kernel mode some of the calls are ObCreateObject, 
ObOpenObject, ObReferenceObject, ObDereferenceObject, 
and NtClose to manipulate objects through handles, names or 
pointers.

• User mode code isn’t allowed to point directly to the object 
instead user’s get a handle that the Object Manager translates 
into an object that the kernel can reference and use 

• The Object Manager defines a tree-like name space for all 
objects (look at objdir, winobj, and objmon)

Worker Threads

• For asynchronous I/O operations there is a pool of worker 
threads available to complete the work 

• Using the worker thread paradigm it is easy to program up 
multiple asynchronous operations

• Everything isn’t quite that simple for I/O.  

– There are some issues with capturing and returning data 
back to the user

The Full I/O Path for CreateFile

• CreateFile is a user mode routine that packages everything up 
for the kernel API call to NtCreateFile in the I/O system

• NtCreateFile calls Object Manager to create a new file object
• The Object Manager resolves the name to a device with an 

associated create function that it calls (this gets us back into
I/O system but now we know the volume it is destined for)

• The I/O system allocates an I/O Request Packet (IRP) which 
contains all the information needed to process the request and 
calls the file system passing down the IRP.

• The file system can return to the I/O system at anytime.  This 
behavior depends on if the user asked for a synchronous or 
asynchronous operation

• When it is done processing the request the system completes 
the IRP

Completing an I/O Request

• When the file system is done with the request is calls 
IoCompleteRequest passing in the IRP.

• IoCompleteRequest asynchronously completes the request 
back to the user

• The user can actually be in a few states
– The user thread itself could be the one calling 

IoCompleteRequest
– The user thread could be waiting on the IRP to finish
– The user thread could be off doing something else.

• In the case where another thread finishes the IRP then 
thread needs to attach to the user address space to complete 
the request
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The IRP

• IRPs are used for all I/O in the system to represent 
communication between the devices, file systems, and the 
I/O system.

• Each IRP contains a stack of operations and can be 
reissued multiple times before completing the original 
request

• For example,  A CreateFile might need to read and write 
the disk to complete its work.  Instead of allocating a new 
IRP to talk to the device driver the file system can use the 
original CreateFile IRP.

Fast I/O

• The fast read/write path uses memory mapped files

• ReadFile like CreateFile is a user mode routine that calls 
down to NtReadFile.

• NtReadFile uses the Object Manager to translate the user 
handle into a file object.

• It then calls a fast I/O function for the file object to see if 
the data is cached and can be read through a fast path.  If 
so then the I/O is completed without allocating an IRP

• If the data is not cached then the I/O system allocates ad 
IRP and calls down to the file system 

• As part of doing the read the file system will fill the cache 
managers read buffer. 

Things to come

• Accounting, protection and security
• Distributed Systems and RPC
• Take a deep breath and final exam day


