
May 23, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 I/O Systems and the
Full I/O Path
Spring 2001

Gary Kimura
Lecture #26

May 23, 2001

Today’s Topics

• The I/O subsystem

• Disk partitions, volume management, and RAID

• Goal is to cover the full I/O code path, but we still need a
few more important items

– Object management

– Worker queues and other asynchronous worker threads

• Now the full I/O code path for an open, read/write and
close. i.e., from the user API down to the disk and back
again with a few stops in between

I/O Subsystem

• Some hardware features
– Polling versus as a means of controlling devices
– Direct Memory Access hardware to transfer data

directly to and from main memory
• Features of the I/O programming paradigm

– Character-stream versus block I/O
– Sequential versus random access
– Synchronous versus asynchronous I/O

• Implementation considerations in the kernel
– Scheduling the I/O
– Buffered versus non-buffered I/O (and who’s buffer do

we use)
– Software Caching

Disk partitions and volume management

• The disk driver’s job is to essentially present to the rest of
the OS a virtual disk drive or volume.
– In the simplest case the volume matches one for one

with the actual hardware drives.
– Or the driver can divide a single drive into multiple

volumes (or partitions)
– Or the driver can build a larger volume from multiple

disks
• Look at WinDisk example
• Each volume is its own wholly contained file system

structure
• Using multiple disks we can also improve reliability and

performance and that is where RAID comes in

May 23, 2001

CSE 451 Introduction to Operating Systems 2

RAID
The Basic Problem

• Disks are improving, but a lot slower than CPUs
• We can use multiple disks for improving performance

– By stripingfiles across multiple disks (placing parts of
each file on a different disk), we can use parallel I/O to
improve access time

• Striping reduces reliability -- 100 disks have 1/100th the
MTBF (mean time between failures) of one disk

• So, we need striping for performance, but we need
something to help with reliability / availability

• To improve reliability, we can add redundant data to the
disks, in addition to striping

RAID

• A RAID is a Redundant Array of Inexpensive Disks

• Disks are small and cheap, so it’s easy to put lots of disks
(10s to 100s) in one box for increased storage,
performance, and availability

• Data plus some redundant information is striped across the
disks in some way

• How that striping is done is key to performance and
reliability.

Some Raid Issues

• Granularity
– fine-grained: stripe each file over all disks. This gives

high thruput for the file, but limits to transfer of 1 file at
a time

– course-grained: stripe each file over only a few disks.
This limits thruput for 1 file but allows more parallel
file access

• Redundancy
– uniformly distribute redundancy info on disks: avoids

load-balancing problems
– concentrate redundancy info on a small number of

disks: partition the set into data disks and redundant
disks

Raid Level 0

• Level 0 is nonredundantdisk array

• Files are striped across disks, no redundant info

• High read thruput

• Best write thruput (no redundant info to write)

• Any disk failure results in data loss

May 23, 2001

CSE 451 Introduction to Operating Systems 3

Raid Level 1

• Mirrored Disks

• Data is written to two places

• On failure, just use surviving disk

• On read, choose fastest to read

data disks mirror copies

Raid Levels 2 and 3

• Use ECC (error correcting code) or Parity disks

• E.G., each byte on the parity disk is a parity function of the
corresponding bytes on all the other disks

• A read accesses all the data disks

• A write accesses all data disks plusthe parity disk

• On disk failure, read remaining disks plus parity disk to
compute the missing data

data disks parity disk

Level 5

• Block Interleaved Distributed Parity

• Like parity scheme, but distribute the parity info over all
disks (as well as data over all disks)

• Better read performance, large write performance

0 1 2 3 PO

5 6 7 P1 4

10 11 P2 8 9

data & parity drives

File Block
Numbers

Now Back to Window NT

• Our goal is to dissect (as much as we can) the complete
code path for doing I/O in the system. But we still need
two more items

• The Object Manager

• File System worker threads

May 23, 2001

CSE 451 Introduction to Operating Systems 4

Object Management in Windows NT

• The Object Manager in Windows NT is used throughout the
system as a tool for creating, referencing (using ref counts),
accessing, and destroying kernel mode objects.

• These objects include, semaphores, events, file, memory
sections, etc.

• In kernel mode some of the calls are ObCreateObject,
ObOpenObject, ObReferenceObject, ObDereferenceObject,
and NtClose to manipulate objects through handles, names or
pointers.

• User mode code isn’t allowed to point directly to the object
instead user’s get a handle that the Object Manager translates
into an object that the kernel can reference and use

• The Object Manager defines a tree-like name space for all
objects (look at objdir, winobj, and objmon)

Worker Threads

• For asynchronous I/O operations there is a pool of worker
threads available to complete the work

• Using the worker thread paradigm it is easy to program up
multiple asynchronous operations

• Everything isn’t quite that simple for I/O.

– There are some issues with capturing and returning data
back to the user

The Full I/O Path for CreateFile

• CreateFile is a user mode routine that packages everything up
for the kernel API call to NtCreateFile in the I/O system

• NtCreateFile calls Object Manager to create a new file object
• The Object Manager resolves the name to a device with an

associated create function that it calls (this gets us back into
I/O system but now we know the volume it is destined for)

• The I/O system allocates an I/O Request Packet (IRP) which
contains all the information needed to process the request and
calls the file system passing down the IRP.

• The file system can return to the I/O system at anytime. This
behavior depends on if the user asked for a synchronous or
asynchronous operation

• When it is done processing the request the system completes
the IRP

Completing an I/O Request

• When the file system is done with the request is calls
IoCompleteRequest passing in the IRP.

• IoCompleteRequest asynchronously completes the request
back to the user

• The user can actually be in a few states
– The user thread itself could be the one calling

IoCompleteRequest
– The user thread could be waiting on the IRP to finish
– The user thread could be off doing something else.

• In the case where another thread finishes the IRP then
thread needs to attach to the user address space to complete
the request

May 23, 2001

CSE 451 Introduction to Operating Systems 5

The IRP

• IRPs are used for all I/O in the system to represent
communication between the devices, file systems, and the
I/O system.

• Each IRP contains a stack of operations and can be
reissued multiple times before completing the original
request

• For example, A CreateFile might need to read and write
the disk to complete its work. Instead of allocating a new
IRP to talk to the device driver the file system can use the
original CreateFile IRP.

Fast I/O

• The fast read/write path uses memory mapped files

• ReadFile like CreateFile is a user mode routine that calls
down to NtReadFile.

• NtReadFile uses the Object Manager to translate the user
handle into a file object.

• It then calls a fast I/O function for the file object to see if
the data is cached and can be read through a fast path. If
so then the I/O is completed without allocating an IRP

• If the data is not cached then the I/O system allocates ad
IRP and calls down to the file system

• As part of doing the read the file system will fill the cache
managers read buffer.

Things to come

• Accounting, protection and security
• Distributed Systems and RPC
• Take a deep breath and final exam day

