
CSE451 Operating Systems Components and
Basic Organization

Spring 2001

Gary Kimura
Lecture #3

March 31, 2001

Today

• We already talked about the purpose of an OS
• The hardware support for an OS
• Now we’re going to take the 60,000 foot view of an OS

• But first a clarification regarding Physical and Virtual
Memory

OS Structure

• To understand an OS, let’s first look at its components and
then how they’re composed or organized.

• We’ll come back and look at each of these in detail as the
course progresses.

• Realize that it’s never as simple as it looks. These basic
concepts exist in some form in all systems, however each
system implements them in a slightly different way.

• Also, the divisions between components may not be as
clean in the real world as in the model

Process Management

• An operating system executes many kinds of activities:
– user programs
– batch jobs or command scripts
– system programs: print spoolers, name servers, file

servers, network listeners, etc...
• Each of these “execution entities” is encapsulated in a

process.
• The process includes the execution context (pc, registers,

vm, resources, etc) and all info the activity (program)
needs to run.

• The OS schedules processes to run.

Processes

A program is a passive thing -- just a file on the disk
with code that is potentially runnable.
A process is one instance of a program in execution;
at any instance, there may be many processes running
copies of a single program (e.g., an editor): each is a
separate, independent process.

4

Code
Stack
PC
Registers

page tables
resource counts

....

Code
Stack
PC
Registers

page tables
resource counts

....

Process BProcess A

Process Operations

• Processes are fundamental OS-provided objects.
• The OS supports operations on processes, e.g.:

– create a process
– delete a process
– suspend a process
– resume a process
– inter-process communication
– inter-process synchronization
– create/delete a subprocess

Memory Management

• Primary memory is the direct access storage for CPU.
• Programs must be stored in memory to execute.
• OS must:

– allocate memory space for programs (both explicitly and
implicitly)

– deallocate memory space when needed
– maintain the mappings from virtual to physical memory

(page tables)
– decide how much memory to allocate to each process,

and when a process should be removed from memory
(policies)

I/O Management

• Much of the OS kernel is concerned with I/O.
• The OS provides a standard interface between programs

(user or sytem) and devices.
• Device drivers are the processes responsible for each device

type. A driver encapsulates device-specific knowledge,
e.g., for device initiation and control, interrupt handling,
and errors.

• There may be a process for each device, or even for each
I/O request, depending on the particular OS.

Secondary Storage Management

• Secondary storage (disk) is the persistent memory, i.e., it
endures system failures (we hope).

• Low-level OS routines are typically responsible for
low-level disk function, such as scheduling of disk
operations, head movement, error handling, etc.

• These routines may also be responsible for managing space
on the disk....

• BUT, the line between this and the file system is very
fuzzy...space management functions may belong in the file
system.

File Management

• Secondary storage devices are too crude to use directly for
long-term storage.

• The file system provides logical objects and logical
operations on those objects.

• A file is the basic long-term storage entity: a file is a
named collection of persistent information that can be read
or written.

• The file system supports directories -- special files that
contain names of other files and associated file information.

File Management

• File system provides standard file operations, e.g.:
– file creation and deletion
– directory creation and deletion
– manipulation of files and directories: read, write,

extend, rename, protect....
– file copy

• The file system also provides general services, e.g.:
– backup
– maintaining mapping information
– accounting and quotas

Protection System

• protection is a general mechanism throughout the OS
• all resources objects need protection

– memory
– processes
– files
– devices

• protection mechanisms help to detect errors as well as to
prevent malicious destruction

Command Interpreter

• process that handles interpretation of user input
commands from keyboard (or script files)

• on some systems, command interpreter is a standard part of
the OS

• on others, it’s simply a non-privileged process that
interfaces to the user, permitting replacement of interpreter
with others

• on others, there’s not really a command language (e.g., the
MacIntosh has no commands in the conventional sense)

Accounting System

• General facility for keeping track of resource usage for all
system objects

• May be used to enforce quotas, or to produce bill$.

14

OS Structure

Hardware

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

The OS (a simplified view)

Error Handling

OS Structure

• An OS consists of all of these components, plus lots of
others, plus system service routines, plus system programs
(privileged and non-privileged), plus

• The big issue:
– how do we organize all of this?
– what are the entities and where do they exist?
– how does these entities cooperate?

• Basically, how do we build a complex system that’s:
– performant
– reliable
– extensible

Structure

Traditionally, systems such as Unix were built as a
monolithic kernel:

16
hardware

OS kernel

user programs

everything

file system, virtual memory,
I/O drivers, process control,
system services, swapping,
networks, protection,
interrupt handling,
windows, accounting, ...

Structure

• Problems with monolithic kernels:
– hard to understand
– hard to modify
– unreliable: a bug anywhere causes a system crash
– hard to maintain

• Since the beginnings of OS design, people have sought
ways to organize the OS to simplify its design and
construction.

Structuring

Traditional approach is layering: implement system
as a set of layers, where each layer is a virtual machine
to the layer above.

That is, each layer provides a “machine” that has higher
level features.

18
hardware

layer 0

layer 1

layer 2

layer 3

hardware
arch. interface

layer 0 “virtual
machine”interface

layer 1 interface

Layering in THE
The first description of this approach was Dijkstra’s
THE system.

19

hardware

CPU scheduling (processes)

memory management

console device (commands)

I/O device buffering

user programs

THE System

• System was composed as a set of sequential processes.
• Each peforms a sequential computation.
• Processes communicate through explicit synchronization

statements.
• Each process could be tested and verified independently.
• Each level sees a logical machine provided by lower levels.

– level 2 sees virtual processors
– level 3 sees VM (really segments)
– level 4 sees a “virtual console”
– level 5 sees “virtual” I/O drivers

Problems with Layering

• Systems must be hierarchical, but real systems are more
complex than that, e.g.,
– file system would like to be a process layered on VM
– VM would like to use files for its backing store I/O

• Approach is not flexible.
• Often has poor performance due to layer crossings.
• Systems are often modelled as layered structures but not

built that way (for better or worse).

Microkernel Approach

• The organizing structure currently in vogue is the
microkernel OS.

• Goal is minimize what goes in the kernel, and implement
much of the OS as user-level processes. This results in:
– better reliability
– ease of extension and customization
– mediocre performance (unfortunately)

• First microkernel system was Hydra (CMU, 1970)
• Examples of microkernel systems are the CMU Mach

system, Chorus (French Unix-like system), and in some
ways Microsoft NT/Windows.

Microkernel System Structure

23
hardware

microkernel low-level
VM protection processor

control

system processes
file system

thread
system

communication

external
paging

network
support

high-level
scheduling

user processes

kernel mode

user mode

Next Time

• Processes, one of the most fundamental pieces in an OS
• What is a process, what does it do, and how does it do it

