CSE451 Operating Systems Components and
Basic Organization
Spring 2001

Gary Kimura
Lecture #3
March 31, 2001

Today

We already talked about the purpose of an OS
The hardware support for an OS
Now we’re going to take the 60,000 foot view of an OS

But first a clarification regarding Physical and Virtual
Memory

OS Structure

To understand an OS, let’s first look at its components and
then how they’re composed or organized.

We’ll come back and look at each of these in detail as the
course progresses.

Realize that it’s never as simple as it looks. These basic
concepts exist in some form in all systems, however each
system implements them in a slightly different way.
Also, the divisions between components may not be as
clean in the real world as in the model

Process Management

An operating system executes many kinds of activities:
— user programs
— batch jobs or command scripts
— system programs: print spoolers, name servers, file
servers, network listeners, etc...
Each of these “execution entities” is encapsulated in a

process.
The process includes the execution context (pc, registers,
vm, resources, etc) and all info the activity (program)
needs to run.

The OS schedules processes to run.

Processes

A program is a passive thing -- just a file on the disk
with code that is potentially runnable.
A process is one instance of a program in execution;

at any instance, there may be many processes running
copies of a single program (e.g., an editor): eachisa
separate, independent process.

Process A Process B

Code
Stack page tables
PC resource counts

Code
Stack page tables
PC resource counts

Registers Registers

Process Operations

* Processes are fundamental OS-provided objects.
* The OS supports operations on processes, €.g.:

— create a process

— delete a process

— suspend a process

— resume a process

— inter-process communication

— inter-process synchronization

— create/delete a subprocess

Memory Management

* Primary memory is the direct access storage for CPU.
* Programs must be stored in memory to execute.
* OS must:
— allocate memory space for programs (both explicitly and
implicitly)
— deallocate memory space when needed

— maintain the mappings from virtual to physical memory
(page tables)
— decide how much memory to allocate to each process,

and when a process should be removed from memory
(policies)

[/O Management

¢ Much of the OS kernel is concerned with I/O.

* The OS provides a standard interface between programs
(user or sytem) and devices.

* Device drivers are the processes responsible for each device
type. A driver encapsulates device-specific knowledge,
e.g., for device initiation and control, interrupt handling,
and errors.

* There may be a process for each device, or even for each
I/O request, depending on the particular OS.

Secondary Storage Management

Secondary storage (disk) is the persistent memory, 1.e., it
endures system failures (we hope).

Low-level OS routines are typically responsible for
low-level disk function, such as scheduling of disk
operations, head movement, error handling, etc.

These routines may also be responsible for managing space
on the disk....

BUT, the line between this and the file system is very

fuzzy...space management functions may belong in the file
system.

File Management

Secondary storage devices are too crude to use directly for
long-term storage.

The file system provides logical objects and logical
operations on those objects.

A file is the basic long-term storage entity: a file is a
named collection of persistent information that can be read
or written.

The file system supports directories -- special files that
contain names of other files and associated file information.

File Management

File system provides standard file operations, e.g.:
— file creation and deletion
— directory creation and deletion

— manipulation of files and directories: read, write,
extend, rename, protect....

— file copy

The file system also provides general services, e.g.:
— backup

— maintaining mapping information

— accounting and quotas

Protection System

protection is a general mechanism throughout the OS
all resources objects need protection

— memory

— processes

— files

— devices

protection mechanisms help to detect errors as well as to
prevent malicious destruction

Command Interpreter

* process that handles interpretation of user input
commands from keyboard (or script files)

* on some systems, command interpreter is a standard part of
the OS

* on others, it’s simply a non-privileged process that
interfaces to the user, permitting replacement of interpreter
with others

* on others, there’s not really a command language (e.g., the
MaclIntosh has no commands in the conventional sense)

Accounting System

* General facility for keeping track of resource usage for all
system objects

* May be used to enforce quotas, or to produce bill$.

OS Structure

The OS (a simplified view)

[Com)yland Interprete}
A/ ‘
[Information Syv!f esl 4.
E(rror Handling mh Accounting Systen}
yst|
07T N Ao
ﬁtection Systerk Y, >< }\
./ / / -
| TSecondary Sterage
[Process Management Management
rd
Hardware 14

OS Structure

* An OS consists of all of these components, plus lots of
others, plus system service routines, plus system programs
(privileged and non-privileged), plus

* The big issue:
— how do we organize all of this?
— what are the entities and where do they exist?
— how does these entities cooperate?
* Basically, how do we build a complex system that’s:
— performant
— reliable
— extensible

Structure

Traditionally, systems such as Unix were built as a
monolithic kernel:

user programs

file system, virtual memory,
1/0 drivers, process control,
system services, swapping,

OS kernel everything v
networks, protection,
interrupt handling,
windows, accounting, ...

hardware

Structure

* Problems with monolithic kernels:
— hard to understand
— hard to modify
— unreliable: a bug anywhere causes a system crash
— hard to maintain

* Since the beginnings of OS design, people have sought
ways to organize the OS to simplify its design and
construction.

Structuring

Traditional approach is layering: implement system
as a set of layers, where each layer is a virtual machine
to the layer above.

That is, each layer provides a “machine” that has higher
level features.

layer 3
layer 2
layer 1 interface
layer 1 layer 0 “virtual
layer 0 machine”interface
hardware
hardware arch. interface

Layering in THE

The first description of this approach was Dijkstra’s
THE system.

user programs

T/0 device buffering

console device (commands)

memory management

CPU scheduling (processes)

hardware

19

THE System

System was composed as a set of sequential processes.
Each peforms a sequential computation.

Processes communicate through explicit synchronization
statements.

Each process could be tested and verified independently.
Each level sees a logical machine provided by lower levels.
— level 2 sees virtual processors
— level 3 sees VM (really segments)
— level 4 sees a “virtual console”
— level 5 sees “virtual” I/O drivers

Problems with Layering

Systems must be hierarchical, but real systems are more
complex than that, e.g.,

— file system would like to be a process layered on VM
— VM would like to use files for its backing store 1/O
Approach is not flexible.
Often has poor performance due to layer crossings.

Systems are often modelled as layered structures but not
built that way (for better or worse).

Microkernel Approach

The organizing structure currently in vogue is the
microkernel OS.

Goal is minimize what goes in the kernel, and implement
much of the OS as user-level processes. This results in:

— better reliability
— ease of extension and customization
— mediocre performance (unfortunately)
First microkernel system was Hydra (CMU, 1970)

Examples of microkernel systems are the CMU Mach
system, Chorus (French Unix-like system), and in some
ways Microsoft NT/Windows.

user processes O O O

Microkernel System Structure

o ~O
O

user mode
file system high-level
scheduling

system processes

thread xterna etwor

system paging support

communication
microkernel low-level Fotection | Processor keérnel mode
VM P ! control

hardware
23

Next Time

* Processes, one of the most fundamental pieces in an OS
* What is a process, what does it do, and how does it do it

