
April 2, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 Processes
Spring 2001

Gary Kimura
Lecture #4

April 2, 2001

Today

• Quick review (our road map)
• Processes the basic computational “object” of the OS
• Conceptually

– What formally makes up a process?
– What does a process do (more importantly what does an 

OS do to a process)
• Nuts and bolts

– The usual round of data structures and code behind the 
concept 



April 2, 2001

CSE 451 Introduction to Operating Systems 2

But First, Your Job for Week #2

• Readings in Silberschatz

– Chapter 4 (Monday and Wednesday lecture), 

– Chapter 5 (Friday lecture)

• Homework #2

– Out: Today Monday April 2, 2001

– Due: Next Monday April 9, 2001

– Silberschatz questions 4.6, 4.7, and 5.2

What have we looked at so far

• What is an OS when it is all put together and what does it 
do?

• What tools are available to build the OS?  (i.e., the 
hardware)

• What are the big pieces we need build and how do we stick 
them together?  (i.e., how do we organize the insides)



April 2, 2001

CSE 451 Introduction to Operating Systems 3

Process Management

• Process management is the task of shepherding programs 
through the OS gauntlet. 

• In process management there are several issues we need to 
deal with:
– What is the basic entity involved (i.e., the units of 

execution)
– How are those entities represented in the OS
– How is work scheduled in the CPU
– What are possible execution states, and how does the 

system move from one to another
• The term process, not surprisingly is the name we use to 

encapsulate this basic entity.

The Process

• Basic idea behind the processis that
– A process is the unit of execution, it represents a 

running program in the system
– It is also the unit of scheduling and resource allocation 

in the OS.  Meaning the OS typically allocates 
resources to a process

– It is the dynamic (active) execution context (as opposed 
to a program, which is static)

• A process is sometimes called a job or a taskor a 
sequential process.



April 2, 2001

CSE 451 Introduction to Operating Systems 4

What’s in a Process?

• A process consists of at least:
– The code for the running program
– The data for the running program (both static and 

dynamic)
– An execution stack tracing the state of procedure calls 

made
– The Program Counter, indicating the next instruction to 

execute
– A set of general-purpose registers with current values
– A set of operating system resources (open files, 

connections to other programs, etc.)
• The process contains all the state for a program in 

execution.

Process State

• There may be several processes running the same program 
(e.g., an editor), but each is a distinct process with its own 
representation.

• Each process has an execution statethat indicates what it is 
currently doing, e.g.,:
– Ready:  waiting to be assigned to the CPU
– Running:  executing instructions on the CPU
– Waiting:  waiting for an event, e.g., I/O completion

• As a program executes, it moves from state to state



April 2, 2001

CSE 451 Introduction to Operating Systems 5

Process State Changing

New Ready Running
Terminated

Waiting

Processes move from state to state as a result of 
actions they perform (e.g., system calls), OS actions
(rescheduling), and external actions (interrupts)

Process Data Structures

• At any time, there are many processes in the system, each 
in its particular state.

• The OS must have data structures representing each 
process.  This structure is often called a Process Control 
Blockor PCB for short.

• The PCB contains all of the information about a process.
• The PCB is where the OS keeps all of a process’ hardware 

execution state (PC, SP, registers) when the process is not 
running.  For example, when an interrupt occurs the OS 
stores the interrupted process’ state into its PCB



April 2, 2001

CSE 451 Introduction to Operating Systems 6

PCB

The PCB contains lots of information, e.g.:

process state

process number

program counter

stack pointer

32 general-purpose registers

memory management info

username of owner

queue pointers for state queues

scheduling info (priority, etc.)

accounting info

PCBs and Hardware State

• When a process is running its Program Counter, stack 
pointer, registers, etc., are loaded on the CPU (i.e., the 
processor hardware registers contain the current values)

• When the OS stops running a process, it saves the current 
values of those registers into the PCB for that process.

• When the OS is ready to start executing a new process, it 
loads the hardware registers from the values stored in that 
process’ PCB.

• The process of switching the CPU from one process to 
another is called a context switch.  Timesharing systems 
may do 100s or 1000s of context switches a second!



April 2, 2001

CSE 451 Introduction to Operating Systems 7

State Queues

• The OS maintains a collection of queues that represent the 
state of all processes in the system.

• There is typically one queue for each state, e.g., ready, 
waiting for I/O, etc.

• Each PCB is queued onto a state queue according to its 
current state.

• As a process changes state, its PCB is unlinked from one 
queue and linked onto another.

State Queues (Continued)

Ready Queue Header

Wait Queue Header

head ptr
tail ptr

head ptr
tail ptr

PCB WPCB A PCB G

PCB X PCB M

There may be many wait queues, one for each
type of wait (specific device, timer, message,…).



April 2, 2001

CSE 451 Introduction to Operating Systems 8

PCBs and State Queues

• PCBs are data structures, dynamically allocated in OS 
memory.

• When a process is created, a PCB is allocated to it, 
initialized, and placed on the correct queue.

• As the process computes, its PCB moves from queue to 
queue.

• When the process is terminated, its PCB is deallocated.

Creating a Process

• One process can create other processes to do its work.  
These are child processes and the creator is the parent.

• In some systems, the parent defines (or donates) resources 
and privileges for its children.

• When a child is created, the parent may either wait for it to 
finish its task, or continue in parallel.

• In Unix, subprocesses are created by a call to Fork; the 
child is identical to the parent, except for a return code 
from Fork.  The child often begins by executing a new 
(and different) program within itself, via a call to Exec. 
(Fork and Exec are Unix System Calls.)

• In bootstrapping a system there is usual a starting process



April 2, 2001

CSE 451 Introduction to Operating Systems 9

Cooperating Processes

• Processes can be independent or they can be cooperating to 
accomplish a single job.

• Cooperating processes can be used:
– to gain speedup by overlapping activities or performing 

work in parallel
– to better structure an application as a small set of 

cooperating processes
– to share information between jobs

• Sometimes processes are structured as a pipeline where 
each produces work for the next stage that consumes it, 
and so on.

Next time

• Processes are nice, but threads are dandy


