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Today

* Finish comparing user and kernel threads

* Whether it be processes or threads that are the basic
execution unit the OS needs to some way of scheduling
each process time on the CPU

 Why?
— To make better utilization of the system
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Goals for Multiprogramming

In a multiprogramming system, we try to increase

utilization and throughput by overlapping I/O and CPU

activities.

This requires several @olicy decisions:

— Determine thenultiprogramming level- the number of
jobs loaded in primary memory

— Decide what job is to run next to guarantee good
service

These decisions are long-term and short-term scheduling
decisions, respectively.

Short-term scheduling executes more frequently, changes
of multiprogramming level are more costly.

Scheduling

Thescheduleiis a main component in the OS kernel
It chooses processes/threads to run from the ready queue.

Thescheduling algorithndetermines how jobs are
scheduled.

In general, the scheduler runs:

— When a process/thread switches from running to
waiting

— When an interrupt occurs

— When a process/thread is created or terminated

In apreemptivesystem, the scheduler can interrupt a

process/thread that is running.

In anon-preemptiveystem, the scheduler waits for a

running process/thread to explicitly block
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Preemptive and Non-preemptive Systems

* In a non-preemptive system the OS will not stop a running
jobs until the job either exists or does an explicit wait

* In a preemptive system the OS can potentially stop a job
midstream in its execution in order to run another job

— Quite often a timer going off and the current jobs time-
slice or quantum being exhausted will cause preemption

Preemptive and Non-preemptive System
(continued)

» | cannot over emphasize the need to understand the
difference between preemptive and non-preemptive
systems

* Preemptive systems also come in various degrees

— Preemptive user but non-preemptive kernel
— Preemptive user and kernel

» This affects your choice of scheduling algorithm, OS

complexity, and system performance
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Scheduling Algorithms Criteria

There are many possible criteria for evaluating a
scheduling algorithm:

— CPU utilization
— Throughput

— Turnaround time
— Waiting time

— Response time

In an interactive system, predictability may be more
important than a low average but high variance.

One OS goal is to give applications the illusion they are
running unhindered by other jobs sharing the CPU and
memory

Various Scheduling Algorithms

First-come First-served
Shortest Job First
Priority scheduling
Round Robin
Multi-level queue

We’'ll examine each in turn
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Scheduling Algorithms
First-Come First-Served

» First-come First-serveFCFC) (FIFO)
— Jobs are scheduled in order of arrival to ready Q
— Typically non-preemptive

* Problem:

— Average waiting time can be large if small jobs wait
behind long ones

»

» time
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— May lead to poor overlap of I/O and CPU

Scheduling Algorithms
Shortest Job First

e Shortest Job FirgSJF)
— Choose the job with the smallest (expected) CPU burst
— Provability optimal min. average waiting time

* Problem:

— Impossible to know size of CPU burst (but can try to
predict from previous activity)

» Can be either preemptive or non-preemptive
* Preemptive SJF is callegthortest remaining time first
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Scheduling Algorithms
Priority Scheduling

Priority Scheduling

— Choose next job based on priority

— For SJF, priority = expected CPU burst

— Can be either preemptive or non-preemptive
* Problem:

— Starvation: jobs can wait indefinitely
Solution to starvation

— Age processes: increase priority as a function of
waiting time

Scheduling Algorithms
Round Robin

Round Robin

— Used for timesharing in particular

— Ready queue is treated as a circular queue (FIFO)
— Each process is given a time slice callegiantum

— It is run for the quantum or until it blocks

Problem:

— Frequent context switch overhead
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Scheduling Algorithms
Multi-level Queues
Multi-level Queues

Probably the most common method used
Implement multiple ready Queues based on the job priority

relative to other jobs in the system
Windows NT/2000 has 32 priority levels
» Each running job is given a time slice or quantum
« After each time slice the next job of highest priority is
given a chance to run

 Jobs can migrate up and down the priority levels based
various activities

Multiple queues allow us to rank each job’s scheduling priofi

ty

Next time

» With so much potentially going on in the system how do
we synchronize all of it?
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