April 6, 2001

CSE451 Scheduling
Spring 2001

Gary Kimura
Lecture #6
April 6, 2001

Today

* Finish comparing user and kernel threads

* Whether it be processes or threads that are the basic
execution unit the OS needs to some way of scheduling
each process time on the CPU

 Why?
— To make better utilization of the system

CSE 451 Introduction to Operating Systems



April 6, 2001

Goals for Multiprogramming

In a multiprogramming system, we try to increase

utilization and throughput by overlapping I/O and CPU

activities.

This requires several @olicy decisions:

— Determine thenultiprogramming level- the number of
jobs loaded in primary memory

— Decide what job is to run next to guarantee good
service

These decisions are long-term and short-term scheduling
decisions, respectively.

Short-term scheduling executes more frequently, changes
of multiprogramming level are more costly.

Scheduling

Thescheduleiis a main component in the OS kernel
It chooses processes/threads to run from the ready queue.

Thescheduling algorithndetermines how jobs are
scheduled.

In general, the scheduler runs:

— When a process/thread switches from running to
waiting

— When an interrupt occurs

— When a process/thread is created or terminated

In apreemptivesystem, the scheduler can interrupt a

process/thread that is running.

In anon-preemptiveystem, the scheduler waits for a

running process/thread to explicitly block

CSE 451 Introduction to Operating Systems




April 6, 2001

Preemptive and Non-preemptive Systems

* In a non-preemptive system the OS will not stop a running
jobs until the job either exists or does an explicit wait

* In a preemptive system the OS can potentially stop a job
midstream in its execution in order to run another job

— Quite often a timer going off and the current jobs time-
slice or quantum being exhausted will cause preemption

Preemptive and Non-preemptive System
(continued)

» | cannot over emphasize the need to understand the
difference between preemptive and non-preemptive
systems

* Preemptive systems also come in various degrees

— Preemptive user but non-preemptive kernel
— Preemptive user and kernel

» This affects your choice of scheduling algorithm, OS

complexity, and system performance

CSE 451 Introduction to Operating Systems



April 6, 2001

Scheduling Algorithms Criteria

There are many possible criteria for evaluating a
scheduling algorithm:

— CPU utilization
— Throughput

— Turnaround time
— Waiting time

— Response time

In an interactive system, predictability may be more
important than a low average but high variance.

One OS goal is to give applications the illusion they are
running unhindered by other jobs sharing the CPU and
memory

Various Scheduling Algorithms

First-come First-served
Shortest Job First
Priority scheduling
Round Robin
Multi-level queue

We’'ll examine each in turn

CSE 451 Introduction to Operating Systems




April 6, 2001

Scheduling Algorithms
First-Come First-Served

» First-come First-serveFCFC) (FIFO)
— Jobs are scheduled in order of arrival to ready Q
— Typically non-preemptive

* Problem:

— Average waiting time can be large if small jobs wait
behind long ones

»

» time
[ Joba [ B8] c |

[ B [ c | Job A |

— May lead to poor overlap of I/O and CPU

Scheduling Algorithms
Shortest Job First

e Shortest Job FirgSJF)
— Choose the job with the smallest (expected) CPU burst
— Provability optimal min. average waiting time

* Problem:

— Impossible to know size of CPU burst (but can try to
predict from previous activity)

» Can be either preemptive or non-preemptive
* Preemptive SJF is callegthortest remaining time first

CSE 451 Introduction to Operating Systems




April 6, 2001

Scheduling Algorithms
Priority Scheduling

Priority Scheduling

— Choose next job based on priority

— For SJF, priority = expected CPU burst

— Can be either preemptive or non-preemptive
* Problem:

— Starvation: jobs can wait indefinitely
Solution to starvation

— Age processes: increase priority as a function of
waiting time

Scheduling Algorithms
Round Robin

Round Robin

— Used for timesharing in particular

— Ready queue is treated as a circular queue (FIFO)
— Each process is given a time slice callegiantum

— It is run for the quantum or until it blocks

Problem:

— Frequent context switch overhead

CSE 451 Introduction to Operating Systems



April 6, 2001

Scheduling Algorithms
Multi-level Queues
Multi-level Queues

Probably the most common method used
Implement multiple ready Queues based on the job priority

relative to other jobs in the system
Windows NT/2000 has 32 priority levels
» Each running job is given a time slice or quantum
« After each time slice the next job of highest priority is
given a chance to run

 Jobs can migrate up and down the priority levels based
various activities

Multiple queues allow us to rank each job’s scheduling priofi

ty

Next time

» With so much potentially going on in the system how do
we synchronize all of it?

CSE 451 Introduction to Operating Systems



