
April 6, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 Scheduling
Spring 2001

Gary Kimura

Lecture #6

April 6, 2001

Today

• Finish comparing user and kernel threads

• Whether it be processes or threads that are the basic
execution unit the OS needs to some way of scheduling
each process time on the CPU

• Why?

– To make better utilization of the system

April 6, 2001

CSE 451 Introduction to Operating Systems 2

Goals for Multiprogramming

• In a multiprogramming system, we try to increase
utilization and throughput by overlapping I/O and CPU
activities.

• This requires several os policydecisions:
– Determine the multiprogramming level-- the number of

jobs loaded in primary memory
– Decide what job is to run next to guarantee good

service
• These decisions are long-term and short-term scheduling

decisions, respectively.
• Short-term scheduling executes more frequently, changes

of multiprogramming level are more costly.

Scheduling

• The scheduleris a main component in the OS kernel
• It chooses processes/threads to run from the ready queue.
• The scheduling algorithmdetermines how jobs are

scheduled.
• In general, the scheduler runs:

– When a process/thread switches from running to
waiting

– When an interrupt occurs
– When a process/thread is created or terminated

• In a preemptivesystem, the scheduler can interrupt a
process/thread that is running.

• In a non-preemptivesystem, the scheduler waits for a
running process/thread to explicitly block

April 6, 2001

CSE 451 Introduction to Operating Systems 3

Preemptive and Non-preemptive Systems

• In a non-preemptive system the OS will not stop a running
jobs until the job either exists or does an explicit wait

• In a preemptive system the OS can potentially stop a job
midstream in its execution in order to run another job

– Quite often a timer going off and the current jobs time-
slice or quantum being exhausted will cause preemption

Preemptive and Non-preemptive System
(continued)

• I cannot over emphasize the need to understand the
difference between preemptive and non-preemptive
systems

• Preemptive systems also come in various degrees

– Preemptive user but non-preemptive kernel

– Preemptive user and kernel

• This affects your choice of scheduling algorithm, OS
complexity, and system performance

April 6, 2001

CSE 451 Introduction to Operating Systems 4

Scheduling Algorithms Criteria

• There are many possible criteria for evaluating a
scheduling algorithm:
– CPU utilization
– Throughput
– Turnaround time
– Waiting time
– Response time

• In an interactive system, predictability may be more
important than a low average but high variance.

• One OS goal is to give applications the illusion they are
running unhindered by other jobs sharing the CPU and
memory

Various Scheduling Algorithms

• First-come First-served

• Shortest Job First

• Priority scheduling

• Round Robin

• Multi-level queue

• We’ll examine each in turn

April 6, 2001

CSE 451 Introduction to Operating Systems 5

Scheduling Algorithms
First-Come First-Served

• First-come First-served(FCFC) (FIFO)
– Jobs are scheduled in order of arrival to ready Q
– Typically non-preemptive

• Problem:
– Average waiting time can be large if small jobs wait

behind long ones

– May lead to poor overlap of I/O and CPU

Job A B C

CB Job A

time

Scheduling Algorithms
Shortest Job First

• Shortest Job First(SJF)

– Choose the job with the smallest (expected) CPU burst

– Provability optimal min. average waiting time

• Problem:

– Impossible to know size of CPU burst (but can try to
predict from previous activity)

• Can be either preemptive or non-preemptive

• Preemptive SJF is called shortest remaining time first

April 6, 2001

CSE 451 Introduction to Operating Systems 6

Scheduling Algorithms
Priority Scheduling

• Priority Scheduling

– Choose next job based on priority

– For SJF, priority = expected CPU burst

– Can be either preemptive or non-preemptive

• Problem:

– Starvation: jobs can wait indefinitely

• Solution to starvation

– Age processes: increase priority as a function of
waiting time

Scheduling Algorithms
Round Robin

• Round Robin

– Used for timesharing in particular

– Ready queue is treated as a circular queue (FIFO)

– Each process is given a time slice called a quantum

– It is run for the quantum or until it blocks

• Problem:

– Frequent context switch overhead

April 6, 2001

CSE 451 Introduction to Operating Systems 7

Scheduling Algorithms
Multi-level Queues

• Multi-level Queues

– Probably the most common method used

– Implement multiple ready Queues based on the job priority

– Multiple queues allow us to rank each job’s scheduling priority
relative to other jobs in the system

– Windows NT/2000 has 32 priority levels

• Each running job is given a time slice or quantum

• After each time slice the next job of highest priority is
given a chance to run

• Jobs can migrate up and down the priority levels based on
various activities

Next time

• With so much potentially going on in the system how do
we synchronize all of it?

