April 9, 2001

CSEA451 Basic Synchronization
Spring 2001

Gary Kimura
Lecture #7
April 9, 2001

Today

» With all these threads running around sharing the same

address space (i.e., memory), how do we keep them from
mangling each other?

» With specific synchronization primitives

CSE 451 Introduction to Operating Systems

April 9, 2001

Do We Really Need to Synchronize?

 Yes and no

* You can build a system and run a long long time before
hitting a synchronization bug. And maybe your
application or user doesn't care.

» But for truly robust systems you need to synchronize your
data structures to ensure their consistency

A very simple example

» Assume a global queue with two fields a flink and a blink

* Here is some sample code to add to the queue
LIST_ENTRY Queue;
NewEntry = new(...)
NewEntry->flink = Queue.flink;
NewEntry->blink = &Queue;
NewEntry->flink->blink = NewEntry;
NewEntry->blink->flink = NewEntry;

* Now let threads execute the above code at the same time
* Where’s the problem?

* The problem goes all the way down to the machine
instructions

CSE 451 Introduction to Operating Systems

April 9, 2001

Synchronization

+ Basic Problem Statement:

If two concurrent processes are accessing a shared
variable, and that variable is readodified and_written
by those processes, then the variable must be controlled tg
avoid erroneous behavior.

» Even simple push and pop stack operations need
synchronization

Push(s,|) { s->stack[++(s->index)] = I; }
Pop(s) { return (s->stack[(s->index)--]); }

Even ignoring stack limit tests these routines need
synchronization in a multi-threaded environment

Another Example (the ATM)

» Suppose each cash machine transaction is controlled by a
separate process, and the withdraw code is:

cur_balance=get_balance (acct_ID)
withdraw_amt=read_amount_from_ATM()
if withdraw_amt>curr_balance then error
curr_balance=curr_balance - withdraw_amt
put_balance (act_ID,curr_balance)
deliver_bucks(withdraw_amt)

* Now, suppose that you and your s.o. share an account.
You each to to separate cash machines and withdraw $10(
from your balance of $1000.

CSE 451 Introduction to Operating Systems

April 9, 2001

ATM Example Continued

you: curr_balance=get_balance(acct_ID)

you: withdraw_amt=read_amount()

you: curr_balance=curr_balance-withdraw_amt
So: curr_balance:get_balance(acc?_lD)

so: withdraw_amt=read-amount()

so: curr_balance=curr_balance-withdraw_amt
so: put_balance(acct_ID,curr_balance)

so: deliver_bucks(withdraw_amt)

you: put_balance(acct_lD,curr_bafance)

you: deliver_bucks(withdraw_amt)

context switch

context switch

» What happens and why?

Problems

» A problem exists because a shared data item
(curr_balance) was accessed without coritygbrocesses
that read, modified, and then rewrote that data.

* We need ways to control access to shared variables.

CSE 451 Introduction to Operating Systems

April 9, 2001

Ways to Solve The Synchronization Problem

* Only have one thread do everything

» Semaphores (a classic text book solution and the one we
cover first)

» Spinlocks

* Interlocked Operations

* Mutexes

* Events

* “EResource” an NT’ism that I'm particularly fond of

Where Can We Actually Use Synchronization?

* Both in the kernel and in user mode
— A good thing too because we need it in both places
— In the kernel most any trick is available for us to use
— In user mode our choices are a bit more limited

» Some synchronization methods are kernel mode only and
some can be used in both modes.

» Kernel mode only because of some tricks use the protected
instruction set

CSE 451 Introduction to Operating Systems

April 9, 2001

Semaphores

» Dijkstra, in the THE system, defined a type of variable and
two synchronization operations that can be used to control
access to critical sections

 First, what is a critical section?

» Dijkstra defined a semaphoas a synchronization
variablethat is manipulated atomicaltifrough operations
signal(s) (a V operation) andait(s) (a P operation).

» To access a critical section, you must:

wait(s) ; I/ wait until semaphore is available
<critical section code>
signal(s) ;I signal others to enter

Semaphore Implementations

Associated with each semaphore is a count indicating the
state of the semaphore

1. >0 means the semaphore is free or available

2. <=0 means the semaphore is taken or in use

3. <0 means there is a thread waiting for the semaphore
(its absolute value is the number of waiters)
» Also associated with each semaphore is a queue of
waiting threads.
* If you executevait and the semaphore is free, you
continue; if not, you block on the waiting queue.

* A ssignalunblocks a thread if it's waiting.

CSE 451 Introduction to Operating Systems

April 9, 2001

Semaphore Operations

typedef struct _SEMAPHORE {

int Value;

List of waiting threads WaitList;
} SEMAPHORE, *PSEMAPHORE;

Signal and Wait must be
VOID Wait(PSEMAHPORE s) { atomic

s->Value = s->Value - 1;

if (s->Value < 0) {
add this thread to s->WaitList;
block current thread;

}

VOID Signal(PSEMAPHORE s) {
s->Value = s->Value + 1,
if (s->Value <= 0) {
remove a thread T from s->WaitList;
wakeup T;

Example: Reader/Writer Problem

* Basic Problem:

— An object is shared among several threads, some which
only read it, and some which write it.

— We can allow multiple readers at a time, but only one
writer at a time.

— How do we control access to the object to permit this
protocol?

CSE 451 Introduction to Operating Systems

April 9, 2001

SEMAPHORE wrt; // control entry to a writer or first reader
SEMAPHORE semap; // controls access to readcount
int readcount; // number of active readers

write process:

A Simplistic Reader/Writer Semaphore Solution

wait(wrt); // any writers or readers?
<perform write operation>
signal(wrt); // allow others

read process:

wait(semap); // ensure exclusion

readcount =readcount + 1; // one more reader

if (readcount = 1) { wait(wrt); } // we're the first
signal(semap);

<perform reading>
wait(semap); // ensure exclusion

readcount = readcount — 1; // one fewer reader

if (readcount = 0) { signal(wrt); } // no more readers
signal(semap)

Reader/Writer Solution Notes

* Note that:

1. The first reader blocks if there is a writer; any other
readers who try to enter will then block semap.

2. Once a writer exists, all readers will fall through.
3. The last reader to exit signals a waiting writer.

4. \When a writer exits, if there is both a reader and writer
waiting, which goes next depends on the scheduler.

CSE 451 Introduction to Operating Systems

April 9, 2001

Semaphore Types

* In general, there are two types of semaphores based on its
initial value

— A binarysemaphore guarantees mutually exclusive
access to a resource (only one entry). The binary
semaphore is initialized to 1. This is also called a
mutexsemaphore, but not everything you hear called a
mutex is implemented as a semaphore

— A countedsemaphore represents a resource with many
units available (as indicated by the count to which it is
initialized). A counted semaphore lets a thread pass as
long as more instances are available.

Example: Bounded Buffer Problem

e The Problem:

There is a buffer shared pyoducerprocesses, which
insert into it, anadonsumeprocesses, which remove
from it.

The processes are concurrent, so we must control their
access to the (shared) variables that describe the state ¢
the buffer.

CSE 451 Introduction to Operating Systems

April 9, 2001

SEMAPHORE empty = n; // count of empty buffers
SEMAPHORE full = 0; // count of full buffers

producer:

Simple Bounded Buffer Semaphore Solution

SEMAPHORE mutex; // mutual exclusion to shared data

wait(empty); // one fewer buffer, block if none available
wait(mutex); // get access to pointers
<add item to buffer>
signal(mutex); // done with pointers
signal(full); // note one more full buffer

consumer:

wait(full); // wait until there’s a full buffer

wait(mutex); // get access to pointers
<remove item from buffer>

signal(mutex); // done with pointers

signal(empty); // note there’s an empty buffer
<use the item>

Things to Remember About Semaphores

* A very common synchronization primitive
« Two main elements a count and a list of waiters
» Two types counted and binary semaphore

» Other synchronization operations can be built on top of
semaphores

CSE 451 Introduction to Operating Systems

10

April 9, 2001

Next Time

» Semaphores are great and used all over the place, but it's
not the only game in town

* Next time we’ll look at a few other useful synchronization
primitives

CSE 451 Introduction to Operating Systems

11

