
April 9, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 Basic Synchronization
Spring 2001

Gary Kimura
Lecture #7

April 9, 2001

Today

• With all these threads running around sharing the same
address space (i.e., memory), how do we keep them from
mangling each other?

• With specific synchronization primitives

April 9, 2001

CSE 451 Introduction to Operating Systems 2

Do We Really Need to Synchronize?

• Yes and no
• You can build a system and run a long long time before

hitting a synchronization bug. And maybe your
application or user doesn’t care.

• But for truly robust systems you need to synchronize your
data structures to ensure their consistency

A very simple example

• Assume a global queue with two fields a flink and a blink
• Here is some sample code to add to the queue

LIST_ENTRY Queue;
NewEntry = new(…)

NewEntry->flink = Queue.flink;

NewEntry->blink = &Queue;

NewEntry->flink->blink = NewEntry;

NewEntry->blink->flink = NewEntry;

• Now let threads execute the above code at the same time
• Where’s the problem?
• The problem goes all the way down to the machine

instructions

April 9, 2001

CSE 451 Introduction to Operating Systems 3

Synchronization

• Basic Problem Statement:
If two concurrent processes are accessing a shared
variable, and that variable is read, modified, and written
by those processes, then the variable must be controlled to
avoid erroneous behavior.

• Even simple push and pop stack operations need
synchronization

Push(s,I) { s->stack[++(s->index)] = I; }

Pop(s) { return (s->stack[(s->index)--]); }

Even ignoring stack limit tests these routines need
synchronization in a multi-threaded environment

Another Example (the ATM)

• Suppose each cash machine transaction is controlled by a
separate process, and the withdraw code is:

cur_balance=get_balance (acct_ID)

withdraw_amt=read_amount_from_ATM()

if withdraw_amt>curr_balance then error

curr_balance=curr_balance - withdraw_amt
put_balance (act_ID,curr_balance)

deliver_bucks(withdraw_amt)

• Now, suppose that you and your s.o. share an account.
You each to to separate cash machines and withdraw $100
from your balance of $1000.

April 9, 2001

CSE 451 Introduction to Operating Systems 4

ATM Example Continued
you: curr_balance=get_balance(acct_ID)

you: withdraw_amt=read_amount()

you: curr_balance=curr_balance-withdraw_amt

so: curr_balance=get_balance(acct_ID)

so: withdraw_amt=read-amount()

so: curr_balance=curr_balance-withdraw_amt

so: put_balance(acct_ID,curr_balance)

so: deliver_bucks(withdraw_amt)

you: put_balance(acct_ID,curr_balance)

you: deliver_bucks(withdraw_amt)

• What happens and why?

context switch

context switch

Problems

• A problem exists because a shared data item
(curr_balance) was accessed without controlby processes
that read, modified, and then rewrote that data.

• We need ways to control access to shared variables.

April 9, 2001

CSE 451 Introduction to Operating Systems 5

Ways to Solve The Synchronization Problem

• Only have one thread do everything
• Semaphores (a classic text book solution and the one we

cover first)
• Spinlocks
• Interlocked Operations
• Mutexes
• Events
• “EResource” an NT’ism that I’m particularly fond of

Where Can We Actually Use Synchronization?

• Both in the kernel and in user mode
– A good thing too because we need it in both places
– In the kernel most any trick is available for us to use
– In user mode our choices are a bit more limited

• Some synchronization methods are kernel mode only and
some can be used in both modes.

• Kernel mode only because of some tricks use the protected
instruction set

April 9, 2001

CSE 451 Introduction to Operating Systems 6

Semaphores

• Dijkstra, in the THE system, defined a type of variable and
two synchronization operations that can be used to control
access to critical sections.

• First, what is a critical section?
• Dijkstra defined a semaphoreas a synchronization

variablethat is manipulated atomicallythrough operations
signal(s) (a V operation) and wait(s)(a P operation).

• To access a critical section, you must:
wait(s) ; // wait until semaphore is available

<critical section code>

signal(s) ; // signal others to enter

Semaphore Implementations

• Associated with each semaphore is a count indicating the
state of the semaphore
1. > 0 means the semaphore is free or available
2. <= 0 means the semaphore is taken or in use
3. < 0 means there is a thread waiting for the semaphore

(its absolute value is the number of waiters)
• Also associated with each semaphore is a queue of

waiting threads.
• If you execute wait and the semaphore is free, you

continue; if not, you block on the waiting queue.
• A signalunblocks a thread if it’s waiting.

April 9, 2001

CSE 451 Introduction to Operating Systems 7

Semaphore Operations

typedef struct _SEMAPHORE {

int Value;

List of waiting threads WaitList;

} SEMAPHORE, *PSEMAPHORE;

VOID Wait(PSEMAHPORE s) {

s->Value = s->Value - 1;

if (s->Value < 0) {

add this thread to s->WaitList;

block current thread;

}

}

VOID Signal(PSEMAPHORE s) {

s->Value = s->Value + 1;

if (s->Value <= 0) {

remove a thread T from s->WaitList;

wakeup T;

}

}

Signal and Wait must be
atomic

Example: Reader/Writer Problem

• Basic Problem:
– An object is shared among several threads, some which

only read it, and some which write it.
– We can allow multiple readers at a time, but only one

writer at a time.
– How do we control access to the object to permit this

protocol?

April 9, 2001

CSE 451 Introduction to Operating Systems 8

A Simplistic Reader/Writer Semaphore Solution

SEMAPHORE wrt; // control entry to a writer or first reader

SEMAPHORE semap; // controls access to readcount

int readcount; // number of active readers

write process:

wait(wrt); // any writers or readers?

<perform write operation>

signal(wrt); // allow others

read process:

wait(semap); // ensure exclusion

readcount = readcount + 1; // one more reader

if (readcount = 1) { wait(wrt); } // we’re the first

signal(semap);

<perform reading>

wait(semap); // ensure exclusion

readcount = readcount – 1; // one fewer reader

if (readcount = 0) { signal(wrt); } // no more readers

signal(semap)

Reader/Writer Solution Notes

• Note that:
1. The first reader blocks if there is a writer; any other

readers who try to enter will then block on semap.
2. Once a writer exists, all readers will fall through.
3. The last reader to exit signals a waiting writer.
4. When a writer exits, if there is both a reader and writer

waiting, which goes next depends on the scheduler.

April 9, 2001

CSE 451 Introduction to Operating Systems 9

Semaphore Types

• In general, there are two types of semaphores based on its
initial value
– A binarysemaphore guarantees mutually exclusive

access to a resource (only one entry). The binary
semaphore is initialized to 1. This is also called a
mutexsemaphore, but not everything you hear called a
mutex is implemented as a semaphore

– A countedsemaphore represents a resource with many
units available (as indicated by the count to which it is
initialized). A counted semaphore lets a thread pass as
long as more instances are available.

Example: Bounded Buffer Problem

• The Problem:
There is a buffer shared by producerprocesses, which
insert into it, and consumerprocesses, which remove
from it.

The processes are concurrent, so we must control their
access to the (shared) variables that describe the state of
the buffer.

April 9, 2001

CSE 451 Introduction to Operating Systems 10

Simple Bounded Buffer Semaphore Solution
SEMAPHORE mutex; // mutual exclusion to shared data

SEMAPHORE empty = n; // count of empty buffers

SEMAPHORE full = 0; // count of full buffers

producer:

wait(empty); // one fewer buffer, block if none available

wait(mutex); // get access to pointers

<add item to buffer>

signal(mutex); // done with pointers

signal(full); // note one more full buffer

consumer:

wait(full); // wait until there’s a full buffer

wait(mutex); // get access to pointers

<remove item from buffer>

signal(mutex); // done with pointers

signal(empty); // note there’s an empty buffer

<use the item>

Things to Remember About Semaphores

• A very common synchronization primitive
• Two main elements a count and a list of waiters
• Two types counted and binary semaphore
• Other synchronization operations can be built on top of

semaphores

April 9, 2001

CSE 451 Introduction to Operating Systems 11

Next Time

• Semaphores are great and used all over the place, but it’s
not the only game in town

• Next time we’ll look at a few other useful synchronization
primitives

