
April 13, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 More Synchronization
Spring 2001

Gary Kimura

Lecture #9

April 13, 2001

Today

• So far we’ve talked about semaphore in a rather general
terms

• Semaphores can be used both in user and kernel level
code. Kernel level is usual direct support, user level code
often requires some kernel calls to support synchronized
access to the data structures

• Today we’ll delve into some additional kernel level
synchronization routines. Why? Because semaphores a
nice but are not the right tool for all occasions

• In particular we’re going to look at Windows 2000

April 13, 2001

CSE 451 Introduction to Operating Systems 2

Additional Synchronization Routines

• First two very specialized primitives
– Spinlocks
– Interlocked Operations

• Three general kernel synchronization objects
– Events
– Semaphores
– Mutex

• Lastly one general purpose synchronization package
– Eresource

• Some are kernel mode only
• Some are implemented in kernel mode and exported to the

user as a system call
• Some are implemented in both kernel and user mode

Spinlocks

• A spinlock is a quick mechanism for acquiring exclusive
access to a critical section of code

• It uses Interrupt Request Levels (IRQL) to disable other
code from running

• In the Windows 2000 Kernel the spinlock calls are:
– KeAcquireSpinLock: Enter critical section
– KeReleaseSpinLock: Leave critical section

• On UP systems spinlocks are implemented by raising the
Interrupt Request Level

• On MP systems spinlocks are implemented using a shared
variable that contains zero or one (or the owners thread ID)

• Look at handout for coding example

April 13, 2001

CSE 451 Introduction to Operating Systems 3

Interlocked Operations

• Interlocked operations are atomic operations that can be
used to synchronize access to a single variable or as a
building block for more complex synchronization routines

• Some of the supported interlocked operations are

– InterlockedIncrement
– InterlockedDecrement
– InterlockedCompareExchange
– and there are more

X86 Interlocked Examples
lockprefix is MP only

__inline

LONG FASTCALL

InterlockedIncrement (

IN PLONG Addend)

{

__asm {

mov eax, 1

mov ecx, Addend

lock xadd [ecx], eax

inc eax

}

}

where xadd atomically does

temp := eax + [ecx]

eax := [ecx]

[ecx] := temp

__inline

LONG FASTCALL

InterlockedCompareExchange (

IN OUT PLONG Destination,

IN LONG Exchange,

IN LONG Comperand)

{

__asm {

mov eax, Comperand

mov ecx, Destination

mov edx, Exchange

lock cmpxchg [ecx], edx

}

}

where cmpxchg atomically does

if eax == [ecx]

[ecx] := edx

else

eax := [ecx]

April 13, 2001

CSE 451 Introduction to Operating Systems 4

Events and Semaphores

• Semaphores in Windows 2000 are plain vanilla counted
semaphores

• Event are something new for our class. There are two
types of events

– Synchronization events: used to allow one thread at a
time to enter a critical region of code

– Notification events: used to signal all the threads about
an event

Events

• An event variable’s state is either signaled or not-signaled.
• Threads can wait for an event to become signaled
• Kernel level event calls are

– KeClearEvent: Event becomes not-signaled
– KePulseEvent: Atomically signal and then not-signal

event
– KeReadStateEvent: Returns current event state
– KeResetEvent: Event becomes not-signaled and

returns previous state
– KeSetEventand KeSetEventBoostPriority: Signal an

event and optionally boost the priority of the waiting
thread

• Similar calls are also available at the user level

April 13, 2001

CSE 451 Introduction to Operating Systems 5

Semaphores

• A semaphore variable is just a plain old vanilla counted
semaphore, but its implementation shares much of the
event logic

• Kernel semaphore calls are

– KeReadStateSemaphore: Returns the signal state of
the semaphore

– KeReleaseSemaphore: Takes as input a release count
and a priority boost of the newly released threads

• This is also a set of calls available at user level

Wait for routine

• In Windows there are many types of objects that a thread
can wait on in the kernel. There are semaphores, events,
timers, queues, processes, threads, etc.

• There are two routines that threads use to wait on these
objects. In kernel mode the wait calls are
– KeWaitForSingleObject: Wait for one event or

semaphore to become signaled
– KeWaitForMultipleObjects : Wait for one or more

events or semaphores (WaitAny or WaitAll)
• There is an optional timeout on the wait calls that will

return from the wait call even if the object is not signaled
• Two similar calls are also available at the user level

April 13, 2001

CSE 451 Introduction to Operating Systems 6

An example using events and waits
KEVENT Event;

KSEMAPHORE Semaphore;

Main:

KeInitializeEvent(&Event, SynchronizationEvent);

KeInitializeSemaphore(&Semaphore, 0, MAXLONG);

Thread One:

Status = KeWaitForSingleObject(Event,…,Timeout);

if (Status != STATUS_TIMEOUT) {

// The event was signaled and its ours

}

Thread Two:

Objects[2] = {&Event, &Semaphor};

Status = KeWaitForMultipleObjects(2, Objects, WaitAny,…, Timeout);

Switch (Status) {

0: // event went off

1: // Semaphore went off

Default: // something else happened

}

Thread Three:

KeSetEvent(Event,…)

Executive Mutex

• A mutex looks like a spinlock from the programmers
viewpoint but a mutex allow recursion and page faults

• Operations are
– ExAcquireFastMutex: Enter critical region
– ExReleaseFastMutex: Exit critical region
– ExTryToAcquireFastMutex : Like acquire but return

immediately without blocking and indicate if we
acquired the mutex

• The executive mutex is implemented using kernel
synchronization events

• Similar calls are also available at user level

April 13, 2001

CSE 451 Introduction to Operating Systems 7

Recap of what we have so far

• Spinlocks – in theory this can be done at the user level
however for practical purposes it rarely is done at that
level. Great for protecting short little critical sections.
Usually we want everything in memory (I.e., we don’t
really want to wait while holding a spinlock)

• Interlocked Operations – usable in both user and kernel
mode. Sometimes difficult to use but a great building
block none the less

• Semaphore – Both user and kernel mode. Pretty good for
general synchronization

• Events – Both user and kernel mode. More specialized
than semaphores

• Mutex – Both user and kernel mode. More usable than
spinlocks but also more expensive to use

Executive Resource

• The Executive Resource (Eresource) package is used by
Windows 2000 kernel level code to handle the multi-
reader/single-writer access to protected data structures.

• A version is also available in user mode
• The package exports a typedef called an Eresource
• Operations are:

– ExAcquireResourceShared
– ExAcquireResourceExclusive
– ExAcquireSharedStarveExclusive
– ExReleaseResource(ExReleaseResourceForThread)
– ExConvertExclusiveToShared

April 13, 2001

CSE 451 Introduction to Operating Systems 8

Eresource features

• A resource can be acquired recursively

• The ownership of a resource is tied to a thread ID

• The users get to decide whether exclusive waiters starve

• The package automatically handles priority inversion

• The routines are implemented using spinlocks, events, and
semaphores

• More details at a later lecture if time permits

Next Time

• Review and a midterm

• The midterm will be

– Closed book

– Closed notes

– Closed neighbor

– Open mind

