# CSE 451: Operating Systems Winter 2001

#### **Final Review**

Steve Gribble gribble@cs.washington.edu 323B Sieg Hall

## **Final Logistics**

- Comprehensive: covers entire course
  - lectures, homeworks
  - I won't ask questions based on projects
- Closed book
- Please don't cheat
  - no looking at neighbor's exams
- Wednesday 8:30-10:20am, in this room

## **Architectural Support**

- Privileged instructions
  - what are they, and who gets to execute them?
  - how does CPU know whether to execute them?
  - why do they need to be privileged?
  - what do they manipulate?
- Events
  - exceptions: what generates them? trap vs. fault?
  - interrupt: what generates them?

3/9/2001 © 2001 Steve Gribble 3

#### **OS Structure**

- What are the major components of an OS?
- How are they organized?
  - what is the difference between monolithic, layered, microkernel OS's?
    - advantages and disadvantages?
  - which is Linux?

#### **Processes**

- What is a process? What does it virtualize?
  - differences between program, process, thread?
  - what is contained in process?
    - · what does PCB contain?
  - state queues?
    - which states, what transitions are possible?
    - when do transitions happen?
- Process manipulation
  - what does fork() do? how about exec()?
  - how do shells work?

3/9/2001 © 2001 Steve Gribble 5

#### **Threads**

- What is a thread?
  - why are they useful?
  - user level vs. kernel level threads?
- How does thread scheduling differ from process scheduling?
  - what operations do threads support?
  - what happens on a thread context switch? what is saved in TCB?
  - preemptive vs. non-preemptive scheduling?

#### Synchronization

- Why do we need it?
  - data coordination? execution coordination?
  - what are race conditions? when do they occur?
  - when are resources shared? (variables, heap objects, ...)
- What is mutual exclusion?
  - what is a critical section?
  - what are the requirements of critical sections?
    - mutex, progress, bounded waiting, performance
  - what are mechanisms for building critical sections?
    - · locks, semaphores, (monitors), condition variables

3/9/2001 © 2001 Steve Gribble 7

## Locks and Semaphores

- What does it mean for acquire/release to be atomic?
- how can locks be implemented?
  - spinlocks? interrupts? OS/thread-scheduler?
  - test-and-set?
  - limitations of locks?
- Semaphores
  - wait vs. signal? difference between semaphore and lock?
  - when do threads block on semaphores? when do they wake?
  - bounded buffers problem
    - producer/consumer
  - readers/writers problem

## **Process Scheduling**

- · Long term vs. short term
- When does scheduling happen?
  - job changes state, interrupts, exceptions, job creation
- Scheduling goals?
  - maximize CPU util
  - max job throughput
  - minimize {turnaround time | waiting time | response time}
    - if these are on exam, I will define them for you
  - batch vs. interactive: what are their goals?
- What is starvation? what causes it?
- FCFS/FIFO, SJF, SRJF, priority, RR, MLFQ...

3/9/2001 © 2001 Steve Gribble 9

## Memory Management

- What good is virtual memory?
- Mechanisms for implementing memory management
  - physical vs. virtual addressing
  - partitioning, paging, segmentation
  - page tables, TLB
- Page replacement policies?
- What are overheads related to memory management?

#### Virtualizing Memory

- what is difference between physical and virtual address?
  - fixed vs. variable paritioning?
    - base/limit registers..
    - internal vs. external fragmentation
- paging
  - advantages, disadvantages?
  - what are page tables, PTEs?
    - what are: VPN, PFN, offset? relationship to VA?
    - what's in a PTE? what are modify/reference/valid/prot bits?
- segmentation
  - compare/contrast with paging...advantages?
  - what's in a segment table?
  - how can paging + segmentation be combined? why?

3/9/2001 © 2001 Steve Gribble 11

## Paging, TLBs

- How to reduce overhead of page table?
  - how do multi-level page tables work?
  - what problem does TLB solve?
  - why do they work?
  - how are they managed?
    - · software vs. hardware managed?
- Page faults
  - what is one? how is it used to implement demand paging?
  - what is complete sequence of steps for translating a virtual address to a PA?
    - · all the way from TLB access to paging in from disk
- MM tricks
  - shared memory? mmap? COW?

## Page Replacement

- what is page replacement algorithm?
  - what application behavior does it exploit?
  - when is page replacement algorithm invoked?
- understand:
  - belady's (optimal), FIFO, LRU, approximations of LRU, LRU clock, working set, page fault frequency
  - what is thrashing? why does it occur and when?

3/9/2001 © 2001 Steve Gribble 13

#### Disk

- · Memory hierarchy and locality
- Physical disk structure
  - platters, surfaces, tracks, sectors, cylinders, arms, heads
- Disk interface
  - how does OS make requests to the disk?
- Disk performance
  - access time = seek + rotation + transfer
- · Disk scheduling
  - how does it improve performance?
  - FCFS, SSTF, SCAN, C-SCAN?

#### Files and Directories

- · what is a file
  - what operations are supported?
  - what characteristics do they have?
  - what are file access methods?
- what is a directory
  - what are they used for?
  - how are they implemented?
  - what is a directory entry?
- how does path name translation work?
- ACLs vs capabilities
  - matrix
  - advantages and disadvantages of each

3/9/2001 © 2001 Steve Gribble 15

## FS layout

- · what are file system layouts for?
- general strategies?
  - contiguous, linked, indexed?
  - tradeoffs?
- what is an inode?
  - how are they different than directories?
  - how are inodes and directories used to do path resolution, and find files?

#### FS Buffer cache

- what is a buffer cache?
  - why do OS's use them?
- what are differences between caching reads and writes?
  - write-through, write-back, write-behind?
  - read-ahead?

3/9/2001 © 2001 Steve Gribble 17

## advanced topics

- what is FFS, how does it improve over original unix FS?
- what is RPC?
  - how is it implemented? client-side vs server side stubs?
  - IDL?
  - limitations?
    - is transparency good?

#### crypto

- symmetric key vs. public key
  - understand: authenticity, confidentiality, integrity, nonrepudiation
  - how to send a message securely using symmetric key and public key
    - weaknesses of the protocols
- one-way hash functions
- digital signatures

3/9/2001 © 2001 Steve Gribble 19

## two-phase commit

- · replicas for availability
  - the replica consistency problem
  - how to keep consistent in face of:
    - · software and hardware failures
    - · network partitions
- two-phase commit protocol
  - prepare phase vs. commit phase
  - how logging fits into the picture

# security

- trusted computing base (TCB)
- principle of least privilege
- principle of least common mechanism
- security through obscurity

3/9/2001 © 2001 Steve Gribble 21