
1

CSE 451: Operating Systems
Winter 2001

Lecture 17
Two-phase commit

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

2/25/2001 © 2001 Steve Gribble 2

A fundamental problem

• Consider a client/server architecture
– what happens to the service if a server crashes?

• software failure, OS failure, hardware failure, power outage,
earthquake, …

• Replication to the rescue
– key idea: instead of having one server providing service to

clients, have multiple servers providing the same service
• each of the servers are called replicas
• given N replicas, if one crashes, N-1 can still provide service

– this assumes independent failures

– replication therefore improves availability
• however, it introduces a new problem: keeping replicas

consistent with each other in the face of updates

2

2/25/2001 © 2001 Steve Gribble 3

Some quick math for the curious

• assume N replicas
– assume a specified mean time between failure (MTBF)

• with exponentially distributed failure arrivals
• (in other words, a completely random process)

– assume a specified mean time to repair (MTTR)

• what is the reliability of the overall system?

– MTBFsystem α MTBFreplica
N

MTTRreplica

– note that repair is a crucial part of the system!

2/25/2001 © 2001 Steve Gribble 4

The Replica Consistency problem

• Imagine we have two “bank” servers, and a client that updates
its bank account
– naïve replication strategy: client updates a random server. After

update, the randomly chosen server propagates change to other
server.

• master/slave replication

S1 S2

client

1. update

2. OK

3. propagate

• what are all the things that can go wrong?

3

2/25/2001 © 2001 Steve Gribble 5

What are we to do?

• One (of many) problems is that servers can have
different views of the data at the same time
– this is the very definition of inconsistency!
– even worse, simultaneous updates can stomp on each other

• inconsistency is never resolved

• Idea: update both servers at once?

S1 S2

client

1. update

2. OK

1. update

2. OK

2/25/2001 © 2001 Steve Gribble 6

But there are races…

• Two clients issuing updates at same time
– messages may arrive in different orders at different servers

• e.g. message #1 = “turn on light”, message #2 = “turn off light”
• what’s the state of the light switch at each server?

• How did we deal with races in multithreaded code?
– critical sections, mutual exclusion via locks:

S1 S2

client

1. lock 1. lock

2. OK
2. OK

S1 S2

client

3. update 3. update

4. OK
4. OK

4

2/25/2001 © 2001 Steve Gribble 7

More problems…

• But what about:
– network failure
– client failure
– server failure
– deadlock

• Seems insurmountable…
– a generalized protocol (two-phase commit) was devised to

deal with all of these difficulties

– a key observation:
• give servers (replicas) a chance to say “no”
• if any replica says no, client “aborts” the operation

2/25/2001 © 2001 Steve Gribble 8

Two-phase commit

• Assumptions:
– no byzantine failures (fail-stop)
– goal: update all replicas atomically

• either everybody commits update, or everybody aborts
• no inconsistencies (including races from multiple clients)
• even in the face of network and host failures

• Definitions:
– coordinator: software entity that shepherds process

• client in our example, not necessarily always so

– replica: software entity to be updated by coordinator
– ready to commit: side-effects of update are safely stored on

durable, secondary storage
• in other words, if a replica is ready to commit, then even if it

crashes it can continue with two-phase commit

5

2/25/2001 © 2001 Steve Gribble 9

The Protocol

• Phase 1:
– coordinator sends a PREPARE message to each replica
– coordinator waits for all participants to vote
– each participant:

• votes PREPARED if it is ready to commit
– also locks data item(s) being updated

• votes NO for any reason
– including inability to grab a lock

• may delay voting arbitrarily…
• Phase 2:

– if coordinator receives PREPARED from all replicas, it decides to
commit. if not, it decides to abort.

• at this point, the “transaction” or update is over
– coordinator sends its decision to all participants

• COMMIT or ABORT
– participant marks decision, releases lock

– participants acknowledge receipt with DONE

2/25/2001 © 2001 Steve Gribble 10

Outcome #1: COMMIT

coord

coord
coord

coord
coord
replica

PREPARE

PREPARED

COMMIT

DONE

6

2/25/2001 © 2001 Steve Gribble 11

Outcome #2: ABORT

coord

coord
coord

coord
coord
replica

PREPARE

NO

ABORT

DONE

2/25/2001 © 2001 Steve Gribble 12

Performance

• In the absence of failures, 2PC makes a total of 1.5
round-trips of messages before decision is made
– prepare
– vote to prepare
– commit/abort
– (note that the “DONE” is just for bookkeeping, it doesn’t

affect response time)

7

2/25/2001 © 2001 Steve Gribble 13

Uncertainty

• Before it votes, a replica can unilateraily abort
• After it votes PREPARED and before it receives the

coordinator’s decision, a replica is in an uncertain
condition.
– it can’t either commit or abort until it hears from coordinator

coord
coord

coord
coord

coord
replica

PREPARE

PREPARED

COMMIT

DONE

uncertain

2/25/2001 © 2001 Steve Gribble 14

More uncertainty

• Note that the coordinator is never uncertain
– it can always unilaterally abort, until it sends out a COMMIT

• If a participant fails or is partitioned during uncertain
period…
– it must contact coordinator to discover decision after

recovery or network repair
• implies coordinator must keep track of decisions
• for how long?

8

2/25/2001 © 2001 Steve Gribble 15

Failure handling

• Failure is detected with timeouts
– must eventually rely on timeouts in a distributed system

• If participant times out waiting for PREPARE
– it can simply abort

• If coordinator times out waiting for a vote
– it can simply abort

• If participant times out waiting for a decision
– it becomes “blocked”

• punt to some other resolution protocol
• simplest one: wait for coordinator to recover

• If coordinator times out waiting for a done
– ?

