
1

CSE 451: Operating Systems
Spring 2005

Module 1
Course Introduction

Ed Lazowska
lazowska@cs.washington.edu

570 Allen Center

3/27/2005 © 2005 Gribble, Lazowska, Levy 2

Today’s agenda

• Administrivia
– course overview

• course staff
• general structure
• the text
• policies
• your to-do list

– course registration
• OS overview

– functional
• resource management, etc.

– historical
• batch systems, multiprogramming, time shared OS’s
• PCs, networked computers, p2p

3/27/2005 © 2005 Gribble, Lazowska, Levy 3

Course overview

• Everything you need to know will be on the course web
page:

http://www.cs.washington.edu/451/

3/27/2005 © 2005 Gribble, Lazowska, Levy 4

• But to tide you over for the next hour …
– course staff

• Ed Lazowska
• Ilya Maykov
• Dave Richardson

– general structure
• read the text prior to class
• class will supplement rather than regurgitate the text
• homework exercises provide added impetus to keep up with the

reading
• sections will focus on the project (5 components)
• we really want to encourage discussion, both in class and in

section

3/27/2005 © 2005 Gribble, Lazowska, Levy 5

– the text
• Silberschatz, Galvin & Gagne, Operating System Concepts,

seventh edition
– if using an earlier edition, watch chapter numbering, exercise

numbering

– policies
• collaboration vs. cheating
• homework exercises
• late policy

3/27/2005 © 2005 Gribble, Lazowska, Levy 6

– your to-do list …
• please read the entire course web thoroughly, today
• please get yourself on the cse451 email list, today, and check

your email daily
• homework 1 (reading + problems) is posted on the web now;

reading due Wednesday, problems due at the start of class on
Friday

• project 0 will be posted on the web imminently; will be
discussed in section on Thursday; due at the start of class
next Wednesday (but if you don’t get started this week you’ll be
in trouble)

2

3/27/2005 © 2005 Gribble, Lazowska, Levy 7

Course registration

• If you’re going to drop this course
– please do it soon!

• If you want to get into this course
– plan for the worst case (we’re over our limit of 60 currently)
– but, make sure you’ve filed a petition with the advisors

3/27/2005 © 2005 Gribble, Lazowska, Levy 8

What is an Operating System?

• The text:
– “an intermediary between the user of a computer and the

computer hardware”
– “manages the computer hardware”
– “each [piece] should be … well delineated …, with carefully

defined inputs, outputs, and functions”
– “an amazing aspect of operating systems is how varied they

are in accomplishing these tasks … mainframe operating
systems … personal computer operating systems …
operating systems for handheld computers …”

– “in 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft
included too much functionality in its operating system … for
example, a web browser was an integral part of the
operating system”

3/27/2005 © 2005 Gribble, Lazowska, Levy 9

What is an Operating System?

• An operating system (OS) is:
– a software layer to abstract away and manage details of

hardware resources
– a set of utilities to simplify application development

– “all the code you didn’t write” in order to implement your
application

Applications

OS

Hardware

3/27/200
5

10

DOS

What is Windows?

Application

© John DeTreville, Microsoft Corp.

3/27/200
5

11

DOS

What is Windows?

Windows

Installer

COM

Printing

TCP/IPBrowser

……

……

Application

Application

© John DeTreville, Microsoft Corp. 3/27/200
5

12

Internet

What is .NET?

Application

© John DeTreville, Microsoft Corp.

3

3/27/200
5

13

magicmagic

Internet

What is .NET?

.NET

Device
independence

XML

Identity
& security

AsynchronyExtensibility

……

Application

eBay FedExBank

© John DeTreville, Microsoft Corp.
3/27/2005 © 2005 Gribble, Lazowska, Levy 14

The OS and hardware

• An OS mediates programs’ access to hardware
resources
– Computation (CPU)
– Volatile storage (memory) and persistent storage (disk, etc.)
– Network communications (TCP/IP stacks, Ethernet cards, etc.)
– Input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
– processes (CPU, memory)
– files (disk)
– sockets (network)

3/27/2005 © 2005 Gribble, Lazowska, Levy 15

Why bother with an OS?
• Application benefits

– programming simplicity
• see high-level abstractions (files) instead of low-level hardware

details (device registers)
• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3Com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

3/27/2005 © 2005 Gribble, Lazowska, Levy 16

The major OS issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources

ensured?
• protection: how is one user/program protected from another?
• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with

hardware or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information,

including across a network?

3/27/2005 © 2005 Gribble, Lazowska, Levy 17

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

3/27/2005 © 2005 Gribble, Lazowska, Levy 18

Progression of concepts and form factors

© Silberschatz, Galvin and Gagne

4

3/27/2005 © 2005 Gribble, Lazowska, Levy 19

Multiple trends at work

• “Ontogeny recapitulates phylogeny”
– Ernst Haeckel (1834-1919)

• (“always quotable, even when wrong”)

• “Those who cannot remember the past are
condemned to repeat it”
– George Santayana (1863-1952)

• But new problems arise, and old problems re-define
themselves
– The evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of
mainframes

– But the ubiquity of PCs re-defined the issues in protection
and security

3/27/2005 © 2005 Gribble, Lazowska, Levy 20

Protection and security as an example

• none
• OS from my program
• your program from my program
• my program from my program
• access by intruding individuals
• access by intruding programs
• denial of service
• distributed denial of service
• spoofing
• spam
• worms
• viruses
• stuff you download and run knowingly (bugs, trojan horses)
• stuff you download and run unknowingly (cookies, spyware)

3/27/2005 © 2005 Gribble, Lazowska, Levy 21

OS history

• In the very beginning…
– OS was just a library of code that you linked into your

program; programs were loaded in their entirety into
memory, and executed

– interfaces were literally switches and blinking lights

• And then came batch systems
– OS was stored in a portion of primary memory
– OS loaded the next job into memory from the card reader

• job gets executed
• output is printed, including a dump of memory (why?)
• repeat…

– card readers and line printers were very slow
• so CPU was idle much of the time (wastes $$)

3/27/2005 © 2005 Gribble, Lazowska, Levy 22

Spooling

• Disks were much faster than card readers and
printers

• Spool (Simultaneous Peripheral Operations On-Line)
– while one job is executing, spool next job from card reader

onto disk
• slow card reader I/O is overlapped with CPU

– can even spool multiple programs onto disk
• OS must choose which to run next
• job scheduling

– but, CPU still idle when a program interacts with a peripheral
during execution

– buffering, double-buffering

3/27/2005 © 2005 Gribble, Lazowska, Levy 23

Multiprogramming

• To increase system utilization, multiprogramming
OSs were invented
– keeps multiple runnable jobs loaded in memory at once
– overlaps I/O of a job with computing of another

• while one job waits for I/O completion, OS runs instructions
from another job

– to benefit, need asynchronous I/O devices
• need some way to know when devices are done

– interrupts
– polling

– goal: optimize system throughput
• perhaps at the cost of response time…

3/27/2005 © 2005 Gribble, Lazowska, Levy 24

Timesharing

• To support interactive use, create a timesharing OS:
– multiple terminals into one machine
– each user has illusion of entire machine to him/herself
– optimize response time, perhaps at the cost of throughput

• Timeslicing
– divide CPU equally among the users
– if job is truly interactive (e.g., editor), then can jump between

programs and users faster than users can generate load
– permits users to interactively view, edit, debug running

programs (why does this matter?)

• MIT Multics system (mid-1960’s) was the first large
timeshared system
– nearly all OS concepts can be traced back to Multics

5

3/27/2005 © 2005 Gribble, Lazowska, Levy 25

Distributed OS

• Distributed systems to facilitate use of geographically
distributed resources
– workstations on a LAN
– servers across the Internet

• Supports communications between programs
– interprocess communication

• message passing, shared memory
– networking stacks

• Sharing of distributed resources (hardware, software)
– load balancing, authentication and access control, …

• Speedup isn’t the issue
– access to diversity of resources is goal

3/27/2005 © 2005 Gribble, Lazowska, Levy 26

Parallel OS

• Some applications can be written as multiple parallel
threads or processes
– can speed up the execution by running multiple

threads/processes simultaneously on multiple CPUs
– need OS and language primitives for dividing program into

multiple parallel activities
– need OS primitives for fast communication between activities

• degree of speedup dictated by communication/computation
ratio

– many flavors of parallel computers
• SMPs (symmetric multi-processors)
• MPPs (massively parallel processors)
• NOWs (networks of workstations)
• computational grid (SETI @home)

3/27/2005 © 2005 Gribble, Lazowska, Levy 27

Client/Server computing

• Mail server/service
• File server/service
• Print server/service
• Compute server/service
• Game server/service
• Music server/service
• Web server/service
• etc.

3/27/2005 © 2005 Gribble, Lazowska, Levy 28

Peer-to-Peer (p2p) systems

• Napster
• Gnutella

– example technical challenge: self-organizing overlay
network

– technical advantage of Gnutella?
– er … legal advantage of Gnutella?

3/27/2005 © 2005 Gribble, Lazowska, Levy 29

Embedded/Mobile computing

• Pervasive computing
– cheap processors embedded everywhere
– how many are on your body now? in your car?
– cell phones, PDAs, network computers, …

• Typically very constrained hardware resources
– slow processors
– very small amount of memory (e.g. 8 MB)
– no disk
– typically only one dedicated application
– limited power

3/27/2005 © 2005 Gribble, Lazowska, Levy 30

CSE 451

• In this class we will learn:
– what are the major components of most OS’s?
– how are the components structured?
– what are the most important (common?) interfaces?
– what policies are typically used in an OS?
– what algorithms are used to implement policies?

• Philosophy
– you may not ever build an OS
– but as a computer scientist or computer engineer you need

to understand the foundations
– most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

