CSE 451: Operating Systems
Spring 2005

Module 2
Architectural Support for
Operating Systems

Ed Lazowska
lazowska@cs.washington.edu
570 Allen Center

Even coarse architectural trends
impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

— 1980: 1 MHz Apple I+ == $2,000

+ 1980 also 1 MIPS VAX-11/780 ==
$120,000

— 2005: 3.5GHz Pentium 4 == $1,000

3/26/2005 © 2005 Gribble, Lazowska, Levy 2

« Primary memory capacity

— same story, same reason (Moore’s Law)

« | remember pulling all kinds of strings to get a special deal:
512K of VAX-11/780 memory for $30,000
« today:

Monary

‘St U Vvt X 4 Wit D b i) yEleend 40 1 Ackiveas e ks 4000 o iy L4 Ry £onSguantinss
e 5 J

w oy x 2 for ik £V

3/26/2005

¢ Aside: Where does it all go?
— Facetiously: “What Gordon giveth, Bill taketh away”

— Realistically: our expectations for what the system will do
increase relentlessly

« eg., GUI

— “Software is like a gas — it expands to fill the available
space” — Nathan Myhrvold (1960-)

Transstors Por Die)
Microsoft Stock Price
m«nI e

e

-

ooaen] -

|
|
= (D] F_/,,J/

wl
i wn e o e i e e

3/26/2005 © 2005 Gribble, Lazowska, Levy 4

« Disk capacity, 1975-1989
— doubled every 3+ years
— 25% improvement each year
— factor of 10 every decade

— Still exponential, but far less rapid than processor
performance

« Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!

3/26/2005 © 2005 Gribble, Lazowska, Levy 5

* Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

* Today, 1 GB (a hillion bytes) costs $1 from Dell
(except you have to buy in increments of 40 GB)
— =>1TB costs $1K, 1 PB costs $1M

* In3years, 1 GB will cost $.10
— =>1TB for $100, 1 PB for $100K

3/26/2005 ©2005 Gribble, Lazowska, Levy 6

* Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

* What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

3/26/2005 © 2005 Gribble, Lazowska, Levy 7

Archive e N ferkiFimes

= o MEMAER SN
 [Pwten 0 [

i g i oy, et vt e vttt S Sy o e S | Akt P e | Bt ety

May 36, 3000, Manday

BUSEESS TTRANCIAL DESE

TECHNOLOGY; From PlayStation to Supercomputer for $50,000

By SR MARKORF (4YT) 913 wards

s pochop the clrmryet swbvacy et ol the compating power of scphisiiind bet insigmsive videm- game coascles, o Maocl Gt foe

Supersomputng Apphcations & the Uneverey of Thoow af Urbana- Champagn has sssembled o ngercomgater §om an amiy of Sony
HayStation Z's

The renussyg rystem, with components purthased ot petad paces, eost & Bl rusre thae §50,000 The center's sesemrehiers bebeve the syatem
e capable of 4 half ion, operations & seeond wel witen the defince of ppers cesputes, abiugh € may et vask amng the wollds
500 fastest peperconpreen

Perhaps fe mot strkang aspect o€ the praject, which ubes the opem seurte Liwas operating rysoors, i that fhe ool hardwars engneerng
mvotred was placng 70 of the mdmidual game machines i a rack: and plaggng them togesher with a bigh-rpeed Hewlets- Fackard netwark:
wonnch The center's soentits bought 100 machines, but are hobding 30 m reserve, possibly for high-resohion drplay appbcation

T bk u bt o e Decmmte you buwe o cun o of these targs oun of the plunc packageg.” ved Crasg Steflen, & sersos resesrch st a8 the
center, whe u cne of for scurrits workng pat B oo S propct

Tha scuensets are takang advargage of & standard compenems of the Souy veles-gamt contols St was cognally mimded to mov nd wanors
peatls rapidy on a sekemiios screen so prodice ke graplace. The chy i ot e PlayStation 2's MIPS microprocesior, bt ratber a graphice
co-procasor knvam as the Emotisn Engne. That curtom dengned nlcon chey s capable of producing up o & 5 belion mathemasical aperaions
asecond

] me #

" et

@

3/26/2005 © 2005 Gribble, Lazowska, Levy 1

Archive

e —

owat. e v ey | | s =

Chmber 22, 3003, Welarsdsy
WSS S FRANCIAL DK

TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC's
Wy P WA (1TT) 645 woris

FAN FRANCISOO, Ot 21 -~ A botme-brrw supertomguser, aspmbled Som offte-shelf peracnal ¢ omputers m it cne mondh ot 8 cost of
dightty more San §5 mallion, 15 abowt 1o be ranked ar one of the fastest machares w the world

Word of the low-com pupercompues, pat together by faculty. techescunt asd sradests m Virges Polpeches: Inarae. i thaierg up the eaotenc
werld <f tagh compitng, e trackeicnaly ceut from §100 mallon to $290 milien aaed taken severd
Fears 1o basdd

The Vegesa Trch supareonpister, it begetber from 1,100 Apgle Macsgosh computers, ks boes sucerssflly treted o recers days, secording
#2 Jack Dorgarra, s Usrversty of Trmserine compater scwmtint who mastams & ketng of S workd's 500 fastest machines

The g will oo a Bt the Agple-based nupercomputer,
whach s powesed b B M scroprocessoen, wat sble 10 compue at 741 mlien cpenfioes # secoed, & spred supassed by oely tees
ottt el rongs

3/26/2005 ©2005 Gribble, Lazowska, Levy 8

3/26/2005 © 2005 Gribble, Lazowska, Levy 10

Storage Latency:
How Far Away is the Data?

Andromeda
109 Tape /Optical 2,000 Years
Robot
106 Disk Pluto 2 Years
100 Memory 3.5 hr

10 OnBoard Cache 10 min

2 On Chip Cache ;
1 Registers %My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

Lower-level architecture affects the OS

even more dramatically

« Operating system functionality is dictated, at least in

part, by the underlying hardware architecture

— includes instruction set (synchronization, I/O, ...)

— also hardware components like MMU or DMA controllers
< Architectural support can vastly simplify (or

complicate!) OS tasks

— e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs

lacked necessary hardware support

« Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

— Most current Intel-based PCs siill lack support for 64-bit

addressing (which has been available for a decade on other

platforms: MIPS, Alpha, IBM, etc...)
« this will change mostly due to AMD’s new 64-bit architecture

3/26/2005 © 2005 Gribble, Lazowska, Levy

13

Architectural features affecting OS’s

These features were built primarily to support OS'’s:
— timer (clock) operation

— synchronization instructions (e.g., atomic test-and-set)

— memory protection

— 1/0 control operations

— interrupts and exceptions

— protected modes of execution (kernel vs. user)

— protected instructions

— system calls (and software interrupts)

3/26/2005 © 2005 Gribble, Lazowska, Levy 14

Protected instructions

* some instructions are restricted to the OS
— known as protected or privileged instructions
¢ e.g., only the OS can:
— directly access I/O devices (disks, network cards)
« why?
— manipulate memory state management
* page table pointers, TLB loads, etc.
« why?
— manipulate special ‘mode bits’
« interrupt priority level
* why?
— halt instruction
* why?

3/26/2005 © 2005 Gribble, Lazowska, Levy

15

OS protection

So how does the processor know if a protected
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode
« VAX, x86 support 4 protection modes
— mode is set by status bit in a protected processor register
* user programs execute in user mode
« OS executes in kernel mode (OS == kernel)
Protected instructions can only be executed in kernel
mode

— what happens if user mode executes a protected instruction?

3/26/2005 ©2005 Gribble, Lazowska, Levy 16

Crossing protection boundaries

* So how do user programs do something privileged?
— e.g., how can you write to a disk if you can't execute I/O
instructions?
« User programs must call an OS procedure
— OS defines a sequence of system calls
— how does the user-mode to kernel-mode transition happen?
* There must be a system call instruction, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
— saves caller’s state (regs, mode bit) so they can be restored
OS must verify caller's parameters (e.g., pointers)

must be a way to return to user mode once done

3/26/2005 © 2005 Gribble, Lazowska, Levy 1

7

A kernel crossing illustrated

Netscape: read()

trap to kernel
mode; save app
user mode state
kernel mode
restore app
trap handler state, return to
user mode,
find read() resume
handler in
vector table

read() kernel routine

3/26/2005 ©2005 Gribble, Lazowska, Levy 18

System call issues

« What would happen if kernel didn’t save state?
« Why must the kernel verify arguments?

« How can you reference kernel objects as arguments
or results to/from system calls?

3/26/2005 © 2005 Gribble, Lazowska, Levy

19

Memory protection

OS must protect user programs from each other
— maliciousness, ineptitude

OS must also protect itself from user programs
— integrity and security

— what about protecting user programs from OS?

« Simplest scheme: base and limit registers

— are these protected?

Prog A
base and limit registers
Prog B are loaded by OS before
starting program
PI'Og C

3/26/2005 © 2005 Gribble, Lazowska, Levy

20

More sophisticated memory protection

« coming later in the course

¢ paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

3/26/2005 © 2005 Gribble, Lazowska, Levy 21

OS control flow

after the OS has booted, all entry to the kernel

happens as the result of an event

— event immediately stops current execution

— changes mode to kernel mode, event handler is called

kernel defines handlers for each event type

— specific types are defined by the architecture
« e.g.: timer event, I/O interrupt, system call trap

— when the processor receives an event of a given type, it
« transfers control to handler within the OS

« handler saves program state (PC, regs, etc.)
« handler functionality is invoked

« handler restores program state, returns to program

3/26/2005 ©2005 Gribble, Lazowska, Levy 22

Interrupts and exceptions

« Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
« e.g., a page fault, or an attempted write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
* e.g., device finishes I/O
« e.g., timer fires

3/26/2005 © 2005 Gribble, Lazowska, Levy 23

1/0 control

¢ Issues:
— how does the kernel start an 1/0?
« special I/O instructions
* memory-mapped 1/0
— how does the kernel notice an I/O has finished?
« polling
« interrupts
< Interrupts are basis for asynchronous 1/O
— device performs an operation asynchronously to CPU
— device sends an interrupt signal on bus when done
— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types
« who populates the vector table, and when?

— CPU switches to address indicated by vector index specified
by interrupt signal

3/26/2005 ©2005 Gribble, Lazowska, Levy 24

Timers

« How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt

« “quantum”: how big should it be set?
— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
« very interesting policy question: we'll dedicate a class to it
« Should the timer be privileged?
— for reading or for writing?

3/26/2005 © 2005 Gribble, Lazowska, Levy 25

Synchronization

« Interrupts cause a wrinkle:
— may occur any time, causing code to execute that interferes
with code that was interrupted
— OS must be able to synchronize concurrent processes
¢ Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically
— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
« read-modify-write
* test-and-set
« load-linked store-conditional

3/26/2005 © 2005 Gribble, Lazowska, Levy 2

“Concurrent programming”

* Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

» Arises from the architecture

« Can be sugar-coated, but cannot be totally
abstracted away

« Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

3/26/2005 © 2005 Gribble, Lazowska, Levy 27

