
1

CSE 451: Operating Systems
Spring 2005

Module 9
Scheduling

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

4/17/2005 © 2005 Gribble, Lazowska, Levy 2

Scheduling

• In discussing processes and threads, we talked about
context switching
– an interrupt occurs (device completion, timer interrupt)
– a thread causes an exception (a trap or a fault)

• We glossed over the choice of which process or
thread is chosen to be run next
– “some thread from the ready queue”

• This decision is called scheduling
• scheduling is policy
• context switching is mechanism

4/17/2005 © 2005 Gribble, Lazowska, Levy 3

Multiple levels of scheduling decisions

• Should a new “job” be “initiated,” or should it be held?
– typical of batch systems, including modern scientific

computing systems
– what might cause you to make a “hold” decision?

• Should a program that has been running be
temporarily marked as non-runnable (e.g., swapped
out)?

• Which thread should be given the CPU next? For
how long?

• Which I/O operation should be sent to the disk next?
• On a multiprocessor, should we attempt to coordinate

the running of threads from the same address space
in some way?

4/17/2005 © 2005 Gribble, Lazowska, Levy 4

Preemptive vs. non-preemptive scheduling

• Non-preemptive: once you give somebody the green
light, they’ve got it until they relinquish it
– an I/O operation
– allocation of memory in a system without swapping

• Preemptive: you can re-visit a decision
– setting the timer allows you to preempt the CPU from a

thread even if it doesn’t relinquish it voluntarily
– in any modern system, if you mark a program as non-

runnable, its memory resources will eventually be re-
allocated to others

• doesn’t really require swapping – in a virtual memory system,
the page frames will get preempted, even though this isn’t the
efficient way to do it

4/17/2005 © 2005 Gribble, Lazowska, Levy 5

Scheduling goals

• Scheduling algorithms can have many different goals
(which sometimes conflict)
– maximize CPU utilization
– maximize throughput (requests completed / s)
– minimize average response time (average time from
submission of request to completion of
response)

– minimize average waiting time (average time from
submission of request to start of execution)

– favor some particular class of requests (priority
system)

– avoid starvation (be sure everyone gets at least
some service)

4/17/2005 © 2005 Gribble, Lazowska, Levy 6

• Goals may depend on type of system
– transaction processing system: strive to maximize

throughput
– interactive system: strive to minimize response time of

interactive requests (e.g., editing, vs. compiling)

2

4/17/2005 © 2005 Gribble, Lazowska, Levy 7

Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)
– schedule in the order that they arrive
– “real-world” scheduling of people in lines

• supermarkets, bank tellers, McD’s, Starbucks …
– typically non-preemptive

• no context switching at supermarket!
– jobs treated equally, no starvation

• Sounds perfect!
– in the real world, when does FCFS work well?

• even then, what’s it’s limitation?
– and when does it work badly?

4/17/2005 © 2005 Gribble, Lazowska, Levy 8

FCFS example

• Suppose the duration of A is 5, and the durations of B
and C are each 1
– average response time for schedule 1 (assuming A, B, and

C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6
– average response time for schedule 2 is (1+2+7)/3 = 10/3 =

3.3
– consider also “elongation factor” – a “perceptual” measure:

• Schedule 1: A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)
• Schedule 2: A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

Job A B C

CB Job A

time

1

2

4/17/2005 © 2005 Gribble, Lazowska, Levy 9

• Average response time can be lousy
– small requests wait behind big ones

• May lead to poor utilization of other resources
– if you send me on my way, I can go keep another resource

busy
– FCFS may result in poor overlap of CPU and I/O activity

FCFS drawbacks

4/17/2005 © 2005 Gribble, Lazowska, Levy 10

Algorithm #2: SPT/SJF

• Shortest processing time first / Shortest job first
(SPT/SJF)
– choose the request with the smallest service requirement

• Provably optimal with respect to average response
time

4/17/2005 © 2005 Gribble, Lazowska, Levy 11

SPT/SJF optimality

tk

sf sg

tk+sf tk+sf+sg

• In any schedule that is not SPT, there is some adjacent
pair of requests f and g where the service time
(duration) of f, sf, exceeds that of g, sg

• The total contribution to average response time of f and
g is 2tk+2sf+sg

• If you interchange f and g, their total contribution will be
2tk+2sg+sf, which is smaller because sg < sf

• If the variability of request durations is zero, how does
FCFS compare to SPT for average response time?

4/17/2005 © 2005 Gribble, Lazowska, Levy 12

• It’s non-preemptive … but there’s a preemptive version
– SRPT (Shortest Remaining Processing Time first) –
that accommodates arrivals (rather than assuming all
requests are initially available)

• Sounds perfect!
– what about starvation?
– can you know the processing time of a request?
– can you guess/approximate? How?

SPT drawbacks

3

4/17/2005 © 2005 Gribble, Lazowska, Levy 13

Algorithm #3: RR

• Round Robin scheduling (RR)
– ready queue is treated as a circular FIFO queue
– each request is given a time slice, called a quantum

• request executes for duration of quantum, or until it blocks
– what signifies the end of a quantum?

• time-division multiplexing (time-slicing)
– great for timesharing

• no starvation

• Sounds perfect!
– how is RR an improvement over FCFS?
– how is RR an improvement over SPT?
– what are the warts?

4/17/2005 © 2005 Gribble, Lazowska, Levy 14

RR drawbacks

• What do you set the quantum to be?
– no value is “correct”

• if small, then context switch often, incurring high overhead
• if large, then response time degrades

– treats all jobs equally
• if I run 100 copies of SETI@home, it degrades your service
• how might I fix this?

4/17/2005 © 2005 Gribble, Lazowska, Levy 15

Algorithm #4: Priority

• Assign priorities to requests
– choose request with highest priority to run next

• if tie, use another scheduling algorithm to break (e.g., FCFS)
– to implement SJF, priority = expected length of CPU burst

• Abstractly modeled (and usually implemented) as
multiple “priority queues”
– put a ready request on the queue associated with its priority

• Sounds perfect!

4/17/2005 © 2005 Gribble, Lazowska, Levy 16

Priority drawbacks

• How are you going to assign priorities?
• Starvation

– if there is an endless supply of high priority jobs, no low-
priority job will ever run

• Solution: “age” threads over time
– increase priority as a function of accumulated wait time
– decrease priority as a function of accumulated processing

time
– many ugly heuristics have been explored in this space

4/17/2005 © 2005 Gribble, Lazowska, Levy 17

Combining algorithms

• In practice, any real system uses some sort of hybrid
approach, with elements of FCFS, SPT, RR, and
Priority

• Example: multi-level feedback queues (MLFQ)
– there is a hierarchy of queues
– there is a priority ordering among the queues
– new requests enter the highest priority queue
– each queue is scheduled RR
– queues have different quanta
– requests move between queues based on execution history

4/17/2005 © 2005 Gribble, Lazowska, Levy 18

UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities
• system: middle 40 priorities
• real-time: highest 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU

4

4/17/2005 © 2005 Gribble, Lazowska, Levy 19

Scheduling the Apache web server SRPT

• What does a web request consist of? (What’s it trying
to get done?)

• How are incoming web requests scheduled, in
practice?

• How might you estimate the service time of an
incoming request

• Starvation is a problem in theory – is it a problem in
practice?
– “Kleinrock’s conservation law”

(Recent work by Bianca Schroeder and Mor Harchol-Balter at CMU)

4/17/2005 © 2005 Gribble, Lazowska, Levy 20© 2003 Bianca Schroeder & Mor Harchol-Balter, CMU

4/17/2005 © 2005 Gribble, Lazowska, Levy 21

Summary

• Scheduling takes place at many levels
• It can make a huge difference in performance

– this difference increases with the variability in service
requirements

• Multiple goals, sometimes conflicting
• There are many “pure” algorithms, most with some

drawbacks in practice – FCFS, SPT, RR, Priority
• Real systems use hybrids
• Recent work has shown that SPT/SRPT – always

known to be beneficial in principle – may be more
practical in some settings than long thought

