

Home
Web
Exclusives

News...
For
Users...

For
Developers...

For System
Admins...

Opinions...
Back
Issues

Job
Board

Contact
Us...

Search site for...

Google

FEATURED STORIES

Why Solaris 10 for x86 is
Worth A Look

Build a Compute Cluster
for $1,500

Read Our Exclusive Linux
and the Law Column

Interview with Linus
Torvalds

Why China is Embracing
Linux

A Look at All Things
Debian

MOST POPULAR
STORIES
It’s All About the
Debians
The Emperor
Penguin
Interview: Branden
Robinson
Network Nirvana
Securing your
Environment, Part
One
Linux in the Red
Say Hello to Skype
jCIFS: The SMB Can
Opener
And Now, Something
Completely Different
It's (Not) Magic

MOST RECENT POSTS
Talking

Journaling File Systems

Feature Story
Written by Steve Best
Tuesday, 15 October 2002

The file system is one of the most important parts of an
operating system. The file system stores and manages user
data on disk drives, and ensures that what's read from
storage is identical to what was originally written. In
addition to storing user data in files, the file system also
creates and manages information about files and about
itself. Besides guaranteeing the integrity of all that data, file
systems are also expected to be extremely reliable and have
very good performance.

For the past several years, Ext2 has been the de facto file
system for most Linux machines. It's robust, reliable, and
suitable for most deployments. However, as Linux displaces
Unix and other operating systems in more and more large
server and computing environments, Ext2 is being pushed
to its limits. In fact, many now common requirements --
large hard-disk partitions, quick recovery from crashes,
high-performance I/O, and the need to store thousands and
thousands of files representing terabytes of data -- exceed
the abilities of Ext2.

SPONSORED LINKS

IBM OpenPower, Linux, and
Apache serve the Web

Learn PHP, señor! Register n
for PHP|Tropics

No, I will not fix your compu
(and other geek gadgets)

Page 1 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

OpenOffice.org

Michael Dell Betting
On Red Hat

History Of The Linux
Kernel Archives

March 2005 Now
Online

Red Hat Inks Deal
With DoD

Gael Duval Interview

New Debian Servers

LINUX IS OPEN FOR
BUSINESS

THIS SITE POWERED
BY...

Fortunately, a number of other Linux file systems take up
where Ext2 leaves off. Indeed, Linux now offers four
alternatives to Ext2: Ext3, ReiserFS, XFS, and JFS. In
addition to meeting some or all of the requirements listed
above, each of these alternative file systems also supports
journaling, a feature certainly demanded by enterprises, but
beneficial to anyone running Linux. A journaling file system
can simplify restarts, reduce fragmentation, and accelerate
I/O. Better yet, journaling file systems make fscks a thing of
the past.

If you maintain a system of fair complexity or require high-
availability, you should seriously consider a journaling file
system. Let's find out how journaling file systems work, look
at the four journaling file systems available for Linux, and
walk through the steps of installing one of the newer
systems, JFS. Switching to a journaling file system is easier
than you might think, and once you switch -- well, you'll be
glad you did.

Fun with File Systems

To better appreciate the benefits of journaling file systems,
let's start by looking at how files are saved in a non-
journaled file system like Ext2. To do that, it's helpful to
speak the vernacular of file systems.

A logical block is the smallest unit of storage that
can be allocated by the file system. A logical block
is measured in bytes, and it may take several
blocks to store a single file.
A logical volume can be a physical disk or some
subset of the physical disk space. A logical volume
is also known as a disk partition.
Block allocation is a method of allocating blocks
where the file system allocates one block at a time.
In this method, a pointer to every block in a file is
maintained and recorded.
Internal fragmentation occurs when a file does
not a fill a block completely. For example, if a file
is 10K and a block is 8K, the file system allocates
two blocks to hold the file, but 6K is wasted. Notice
that as blocks get bigger, so does the potential to
have waste.
External fragmentation occurs when the logical
blocks that make up a file are scattered all over the
disk. External fragmentation can cause poor
performance.
An extent is a large number of contiguous blocks.
Each extent is described by a triple, consisting of
(file offset, starting block number, length), where
file offset is the offset of the extent's first block
from the beginning of the file, starting block
number is the first block in the extent, and length
is the number of blocks in the extent. Extents are
allocated and tracked as a single unit, meaning
that a single pointer tracks a group of blocks. For
large files, extent allocation is a much more

Ads by Goooooogle

Linux Backup
Software
Powerful network
backup for tape,
disk, autoloaders,
more! Free trial
www.network-
backup.com

Flash File System
Nand/Nor,
Compact Flash and
MMC/SD
FAT12/16/32,
Royalty free C
source
www.hcc-embedded.com

File Recovery
Software
Win95/98/ME/NT/20
Linux Download
and try Free Demo
www.r-tt.com

Volume Sharing
Software
For SAN, IP SAN,
& Multi-Host SCSI
Share Storage
Between Systems
www.DNFstorage.com

Page 2 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

efficient technique than block allocation. Figure
One shows how extents are used.
File system meta-data is the file system's internal
data structures -- everything concerning a file
except the actual data inside the file. Meta-data
includes date and time stamps, ownership
information, file access permissions, other security
information such as access control lists (if they
exist), the file's size and the storage location or
locations on disk.
An inode stores all of the information about a file
except the data itself. You can think of an inode as
a "bookkeeping" file for a file (indeed, an inode is a
file that consumes blocks, too). An inode contains
file permissions, file types, and the number of links
to the file. It can also contain some direct pointers
to file data blocks; pointers to blocks that contain
pointers to file data bocks (so-called indirect
pointers); and even double- and triple-indirect
pointers. Every inode has a unique inode number
that distinguishes it from every other inode.
A directory is a special kind of file that simply
contains pointers to other files. Specifically, the
inode for a directory file simply contains the inode
numbers of its contents, plus permissions, etc.

Figure Two illustrates blocks, inodes (with a number of
meta-data attributes), directories, and their relationships.

When Good File Systems
Go Bad

With those concepts in mind,

Figure One: How file extents work

An extent is
described by its
block offset in the
file, the location of
the first block in
the extent, and the
length of the
extent.

If file sample.txt
requires 18 blocks,
and the file system
is able to allocate one extent of length 8, a
second extent of length 5, and a third extent
of length 5, the file system would look
something like the drawing below. The first
extent has offset 0 (block Ain the file),
location 0, and length 8. The second extent
has offset 8 (block I), location 20, and
length 5. The last extent has offset 13,
location 35, and length 5.

Page 3 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

here's what happens when a
three-block file is modified
and grows to be a five-block
file:

First, two new blocks
are allocated to hold the
new data.
Next, the file's inode is
updated to record the
two new block pointers
and the new size of the
file.
Finally, the actual data
is written into the blocks.

As you can see, while writing data to a file appears to be a
single atomic operation, the actual process involves a
number of steps (even more steps than shown here if you
consider all of the accounting required to remove free blocks
from a list of free blocka, among other possible metadata
changes).

If all the steps to write a file are completed perfectly (and
this happens most of the time), the file is saved successfully.
However, if the process is interrupted at any time (perhaps
due to power failure or other systemic failure), a non-
journaled file system can end up in an inconsistent state.
Corruption occurs because the logical operation of writing
(or updating) a file is actually a sequence of I/O, and the
entire operation may not be totally reflected on the media at
any given point in time.

If the meta-data or the file data is left in an inconsistent
state, the file system will no longer function properly.

Non-journaled file systems rely on fsck to examine all of the
file system's metadata and detect and repair structural
integrity problems before restarting. If Linux shuts down
smoothly, fsck will typically return a clean bill of health.
However, after a power failure or crash, fsck is likely to find
some kind of error in meta-data.

A file system has a lot of meta-data, and fsck can be very
time consuming. After all, fsck has to scan a file system's
entire repository of meta-data to ensure consistency and
error-free operation. As you may have experienced, the
speed of fsck on a disk partition is proportional to the size of
the partition, the number of directories, and the number of
files in each directory.

For large file systems, journaling becomes crucial. A
journaling file system provides improved structural
consistency, better recovery, and faster restart times than
non-journaled file systems. In most cases, a journaled file
system can restart in less than a second.

Dear Journal...

Figure Two: Blocks,
inodes, directories, files,
and their relationships

Page 4 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

The magic of journaling file systems lies in transactions.
Just like a database transaction, a journaling file system
transaction treats a sequence of changes as a single, atomic
operation -- but instead of tracking updates to tables, the
journaling file system tracks changes to file system meta-
data and/or user data. The transaction guarantees that
either all or none of the file system updates are done.

For example, the process of creating a new file modifies
several meta-data structures (inodes, free lists, directory
entries, etc.). Before the file system makes those changes, it
creates a transaction that describes what it's about to do.
Once the transaction has been recorded (on disk), the file
system goes ahead and modifies the meta-data. The journal
in a journaling file system is simply a list of transactions.

In the event of a system failure, the file system is restored to
a consistent state by replaying the journal. Rather than
examine all meta-data (the fsck way), the file system
inspects only those portions of the meta-data that have
recently changed. Recovery is much faster, usually only a
matter of seconds. Better yet, recovery time is not dependent
on the size of the partition.

In addition to faster restart times, most journaling file
systems also address another significant problem:
scalability. If you combine even a few large-capacity disks,
you can assemble some massive (certainly by early-90s'
standards) file systems. Features of modern file systems
include:

Faster allocation of free blocks. Extents (as
described above) and B+ trees are used
individually or together to find and allocate several
free blocks, either by size or location, quickly.
Large (or very large) numbers of files in a
directory. A directory is a special file that contains
a list of files. If you want a directory to contain
thousands or tens of thousands of files, something
better than a linked-list of (name, inode) pairs is
needed. Again, advanced file systems used B+
trees to store directory entries. In some cases, a
single B+ tree is used for the entire system.
Large files. The old technique of storing direct,
indirect, double-indirect, and even triple indirect
pointers to blocks does not scale well. For very
large files, the number of disk accesses needed to
retrieve a block in the data file would be
prohibitively expensive.

More advanced file systems also manage sparse files,
internal fragmentation, and the allocation of inodes better
than Ext2.

A Wealth of Options

While advanced file systems are tailored primarily for the
high throughput and high uptime requirements of servers

Page 5 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

(from single processor systems to clusters), these file
systems can also benefit client machines where performance
and reliability are wanted or needed.

As mentioned in the introduction, recent releases of Linux
include not one, but four journaling file systems. JFS from
IBM, XFS from SGI, and ReiserFS from Namesys have all
been "open sourced" and subsequently included in the Linux
kernel. In addition, Ext3 was developed as a journaling add-
on to Ext2.

Figure Three shows where the file systems fit in Linux.
You'll note that JFS, XFS, ReiserFS, and Ext3 are
independent "peers." It's possible for a single Linux machine
to use all of those file systems at the same time. A system
administrator could configure a system to use XFS on one
partition, and ReiserFS on another.

What are the features and
benefits of each system? Let's
take a quick look at Ext3,
ReiserFS, and XFS, and then
an in-depth look at JFS.

EXT3

As mentioned above, Ext2 is
the de facto file system for
Linux. While it lacks some of
the advanced features (extremely large files, extent-mapped
files, etc.) of XFS and ReiserFS and others, it's reliable,
stable, and still the default "out of the box" file system for all
Linux distributions. Ext2's real weakness is fsck: the bigger
the Ext2 file system, the longer it takes to fsck. Longer fsck
times means longer down times.

The Ext3 file system was designed to provide higher
availability without impacting the robustness (at least the
simplicity and reliability) of Ext2. Ext3 is a minimal
extension to Ext2 to add support for journaling. Ext3 uses
the same disk layout and data structures as Ext2, and it's
forward- and backward-compatible with Ext2. Migration
from Ext2 to Ext3 (and vice versa) is quite easy, and can
even be done in-place in the same partition. The other three
journaling file systems required the partition to be
formatted with their mkfs utility.

If you want to adopt a journaling file system, but don't have
free partitions on your system, Ext3 could be the journaling
file system to use. See "Switching to Ext3" for information
on how to switch to Ext3 on your Linux machine.

Figure Three: Where file
systems fit in the
operating system

Switching to Ext3

If you want to switch to Ext3, it's a good idea
to make a backup of your file systems. Once
you've done that, run the tune2fs program

Page 6 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

The downside of Ext3? It's an add-on to Ext2, so it still has
the same limitations that Ext2 has. The fixed internal
structures of Ext2 are simply too small (too few bits) to

with the -j option to add a journal file to an
existing Ext2 file system. You can run
tune2fs on a mounted or unmounted Ext2
file system. For instance, if /dev/hdb3 is an
Ext2 file system, the command

tune2fs -j /dev/hdb3

creates the log. If the file system is mounted,
a journal file named .journal will be placed
in the root directory of the file system. If the
file system is not mounted, the journal file
will be hidden. (When you mount an Ext3
file system, the .journal file will appear.
The .journal file is just an indicator to show
that the file system is indeed Ext3.)

Next, the entry for /dev/hdb in /etc/fstab
needs to be changed from ext2 to ext3. The
final step is to reboot and verify that
the /dev/hdb3 partition has type ext3. Type
mount. The output should include an entry
like this one:

% mount

/dev/hdb3 on /test type ext3 (rw)

Ext3 provides three data journaling modes
that can be set at mount time:
data=journal, data=writeback, and
data=ordered. The data=journal mode
provides both meta-data and data
journaling. data=writeback mode
provides only meta-data journaling.
data=ordered mode, which is the default
mode, provides meta-data journaling with
increased integrity. With three modes, a
system administrator can make a trade off
between performance and file data
consistency.

If for some reason you'd like to change the
Ext3 partition back to Ext2, the process is
very simple: umount the file system, and re-
mount it using Ext2.

mount -t ext2 /dev/hdb3 /test

If you want the file system to mount as Ext2
at boot time, you'll also have to change its
entry in etc/fstab.

Page 7 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

capture large file sizes, extremely large partition sizes, and
enormous numbers of files in a single directory. Moreover,
the bookkeeping techniques of Ext2, such as its linked-list
directory implementation, do not scale well to large file
systems (there is an upper limit of 32,768 subdirectories in a
single directory, and a "soft" upper limit of 10,000-15,000
files in a single directory.) To make radical improvements to
Ext2, you'd have to make radical changes. Radical change
was not the intent of Ext3.

However, newer file systems do not have to be backward-
compatible with Ext2. ReiserFS, XFS, and JFS offer
scalability, high-performance, very large file systems, and of
course, journaling. "Why Four Journaling File Systems is a
Good Thing" presents an overview of the capabilities of the
four journaling file systems.

Why Four Journaling File Systems is Good

One of the great things about open source is that
choice is looked upon favorably. Linux is the only
operating system with four journaling file systems
in production: ReiserFS, Ext3, JFS, and XFS.

All four file systems have the GPL license, and
source code is available at
http://www.kernel.org or on each project's
home page. Each of the journaling file system
teams follow a community model and welcome
users and contributors. In fact, the teams share
their best ideas, and competitive benchmarking
encourages constant improvement of all of the
systems.

The table below summarizes the features and
limits of the four Linux journaling file systems.
The first section provides some history of when
the journaling file system were accepted into the
kernel.org source trees. The next section, lists
some of the features of the file systems. The final
section, lists some of the distributions that are
currently shipping the journaling file systems. If
the distribution is shipping the file system that
you want to use, you can use that file system right
"out-of-the-box."

For complete feature lists of each journaling file
system, see the respective project Web pages.

A comparison of journaling file systems
Kernel
support

Ext3 ReiserFS XFS JFS

Kernel
prerequisites

No No Yes No

In kernel.org
source tree
2.4.Ix

2.4.15 2.4.1 - -

Page 8 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

REISERFS

ReiserFS is designed and developed by Hans Reiser and his
team of developers at Namesys. Like the other journaling file
systems, it's open source, is available in most Linux
distributions, and supports meta-data journaling.

+ Pb is petabyte, or 1015 bytes

* Eb is exabyte or 1018 bytes

By the way, the 2.4 kernel has a limit of 2048 Gb
for a single block device, so no file system larger
than that can be created at this time (without
patching the standard kernel). This restriction
could be removed in the 2.5.x development
kernel, and there are patches available to remove
this limit, but as of 2.5.29, the patches haven't
been officially included yet.

In kernel.org
source tree
2.5.Ix

2.5.0 2.5.0 - 2.5.6

License GPL GPL GPL GPL
Features
Largest
block size
supported
on ia32

4 Kb 4 Kb 4 Kb 4 Kb

File system
size
maximum

16384
Gb

17592 Gb
18,000
Pb+

32
Pb

File size
maximum

2048
Gb

1 Eb*
9,000
Pb

4 Pb

Growing the
file system
size

Patch Yes Yes Yes

Access
Control Lists

Patch No Yes WIP

Dynamic
disk inode
allocation

No Yes Yes Yes

Data logging Yes No No No
Place log on
an external
device

Yes Yes Yes Yes

Distros with
journaling
file systems
Red Hat 7.3 Yes Yes No Yes
SuSE 8.0 Yes Yes Yes Yes
Mandrake
Linux 8.2

Yes Yes Yes Yes

Slackware
Linux 8.1

Yes Yes Yes Yes

Page 9 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

One of the unique advantages of ReiserFS is support for
small files -- lots and lots of small files. Reiser's philosophy
is simple: small files encourage coding simplicity. Rather
than use a database or create your own file caching scheme,
use the filesystem to handle lots of small pieces of
information.

ReiserFS is about eight to fifteen times faster than Ext2 at
handling files smaller than 1K.

Even more impressive, (when properly configured) ReiserFS
can actually store about 6% more data that Ext2 on the same
physical file system. Rather than allocate space in fixed 4K
blocks, ReiserFS can allocate the exact space that's needed.
A B* tree manages all file system meta-data, and stores and
compresses tails, portions of files smaller than a block.

Of course, ReiserFS also has excellent performance for large
files, but it's especially adept at managing small files.

For a more in-depth discussion of ReiserFS and instructions
on how to install it, see "Journaling File Systems" in the
August 2000 issue, available online at http://www.linux-
mag.com/2000-08/journaling_01.html .

JFS

JFS for Linux is based on IBM's successful JFS file system
for OS/2 Warp. Donated to open source in early 2000 and
ported to Linux soon after, JFS is well-suited to enterprise
environments. JFS uses many advanced techniques to boost
performance, provide for very large file systems, and of
course, journal changes to the file system. SGI's XFS
(described next) has many similar features. Some of the
features of JFS include:

Extent-based addressing structures. JFS uses
extent-based addressing structures, along with
aggressive block allocation policies to produce
compact, efficient, and scalable structures for
mapping logical offsets within files to physical
addresses on disk. This feature yields excellent
performance.
Dynamic inode allocation. JFS dynamically
allocates space for disk inodes as required, freeing
the space when it is no longer required. This is a
radical improvement over Ext2, which reserves a
fixed amount of space for disk inodes at file system
creation time. With dynamic inode allocation,
users do not have to estimate the maximum
number of files and directories that a file system
will contain. Additionally, this feature decouples
disk inodes from fixed disk locations.
Directory organization. Two different directory
organizations are provided: one is used for small
directories and the other for large directories. The
contents of a small directory (up to 8 entries,
excluding the self (. or "dot") and parent (.. or

Page 10 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

"dot dot" entries) are stored within the directory's
inode. This eliminates the need for separate
directory block I/O and the need to allocate
separate storage. The contents of larger directories
are organized in a B+ tree keyed on name. B+ trees
provide faster directory lookup, insertion, and
deletion capabilities when compared to traditional
unsorted directory organizations.
64-bits. JFS is a full 64-bit file system. All of the
appropriate file system structure fields are 64-bits
in size. This allows JFS to support large files and
partitions.

There are other advanced features in JFS such as allocation
groups (which speeds file access times by maximizing
locality), and various block sizes ranging from 512-bytes to
4096-bytes (which can be tuned to avoid internal and
external fragmentation). You can read about all of them at
the JFS Web site at http://www-
124.ibm.com/developerworks/oss/jfs .

XFS

A little more than a year ago, SGI released a version of its
high-end XFS file system for Linux. Based on SGI's Irix XFS
file system technology, XFS supports meta-data journaling,
and extremely large disk farms. How large? A single XFS file
system can be 18,000 petabytes (that's 1015 bytes) and a
single file can be 9,000 petabytes. XFS is also capable of
delivering excellent I/O performance.

In addition to truly amazing scale and speed, XFS uses many
of the same techniques found in JFS.

Installing JFS

For the rest of the article, let's look at how to install and use
IBM's JFS system. If you have the latest release of
Turbolinux, Mandrake, SuSE, Red Hat, or Slackware, you
can probably skip ahead to the section "Creating a JFS
Partition." If you want to include the latest JFS source code
drop into your kernel, the next few sections show you what
to do.

THE LATEST AND GREATEST

JFS has been incorporated into the 2.5.6 Linux kernel, and
is also included in Alan Cox's 2.4.X-ac kernels beginning
with 2.4.18-pre9-ac4, which was released on February 14,
2002. Alan's patches for 2.4.x series are available from
http://www.kernel.org . You can also download a 2.4
kernel source tree and add the JFS patches to this tree. JFS
comes as a patch for several of the 2.4.x kernel, so first of all,
get the latest kernel from http://www.kernel.org .

At the time of writing, the latest kernel was 2.4.18 and the
latest release of JFS was 1.0.20. We'll be using those in the
instructions below. The JFS patch is available from the JFS

Page 11 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

web site. You also need both the utilities (jfsutils-
1.0.20.tar.gz), the kernel patch (jfs-2.4.18-patch), and the
file system source (jfs-2.4-1.0.20.tar.gz).

If you're using any of the latest distros, you probably won't
have to patch the kernel for the JFS code. Instead, you'll
only need to compile the kernel to update to the latest
release of JFS (you can build JFS either as built-in or as a
module). (To determine what version of JFS was shipped in
the distribution you're running, you can edit the JFS file
super.c and look for a printk() that has the JFS
development version number string.)

PATCHING THE KERNEL TO SUPPORT JFS

In the example below, we'll use the 2.4.18 kernel source tree
as an example on how to patch JFS into the kernel source
tree.

First, you need to download the Linux kernel: linux-
2.4.18 .tar.gz. If you have a linux subdirectory, move it to
linux-org, so it won't replaced by the linux-2.4.18 source
tree. When you download the kernel archive, save it
under /usr/src and expand the kernel source tree by using:

% mv linux linux-org
% tar zxvf linux-2.4.18.tar.gz

This operation will create a directory named /usr/src/linux.

The next step is to get the JFS utilities and the appropriate
patch for kernel 2.4.18. Before you do that, you need to
create a directory for JFS source, /usr/src/jfs1020, and
download (to that directory) the JFS kernel patch and the
JFS file system source files. Once you have those files, you
have everything you need to patch the kernel.

Next, change to the directory of the kernel 2.4.18 source tree
and apply the JFS kernel patch:

% cd /usr/src/linux
% patch -p1 < /usr/src/jfs1020/jfs-2.4-18-patch
% cp /usr/src/jfs1020/jfs-2.4-1.0.20.tar.gz .
% tar zxvf jfs-2.4-1.0.20.tar.gz

Now, you need to configure the kernel and enable JFS by
going to the File systems section of the configuration menu
and enabling JFS file system support (CONFIG_JFS_FS=y).
You also have the option to configure JFS as a module, in
which case you only need to recompile and reinstall kernel
modules by typing:

% make modules && make install_modules

Otherwise, if you configured the JFS option as a kernel
built-in, you need to:

1. Recompile the kernel (in /usr/src/linux). Run the
command

Page 12 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

% make dep && make clean && make bzImage

2. Recompile and install modules (only if you added other
options as modules)

% make modules && make modules_install

3. Install the kernel.

cp arch/i386/boot/bzImage /boot/jfs-bzImage
cp System.map /boot/jfs-System.map
ln -s /boot/jfs-System.map /boot/System.map

Next, update /etc/lilo.conf with the new kernel. Add an
entry like the one that follows and a jfs1020 entry should
appear at the lilo boot prompt:

image=/boot/jfs-bzImage
label=jfs1020
read-only
root=/dev/hda5 # Change to your partition

Be sure to specify the correct root partition. Then run

lilo

to make the system aware of the new kernel. Reboot and
select the jfs1020 kernel to boot from the new image.

After you compile and install the kernel, you should compile
and install the JFS utilities. Save the jfsutils-1.0.20.tar.gz
file into the /usr/src/jfs1020 directory, expand it, run
configure, and the install the utilities.

 % tar zxvf jfsutils-1.0.20.tar.gz
 % cd jfsutils-1.0.20
 % ./configure
 % make && make install

Creating a JFS partition

Having built and installed the JFS utilities, the next step is
to create a JFS partition. In this exact example, we'll
demonstrate the process using a spare partition.

(If there's unpartitioned space on your disk, you can create a
partition using fdisk. After you create the partition, reboot
the system to make sure that the new partition is available to
create a JFS file system on it. In our test system, we
had /dev/hdb3 as a spare partition.)

To create the JFS file system with the log inside the JFS
partition, apply the following command:

mkfs.jfs /dev/hdb3

After the file system has been created, you need to mount it.
You will need a mount point. Create a new empty directory
such as /jfs to mount the file system with the following

Page 13 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

command:

mount -t jfs /dev/hdb3 /jfs

After the file system is mounted, you are ready to try out
JFS. To unmount the JFS file system, you simply use the
umount command with the same mount point as the
argument:

umount /jfs

Go Faster with An External Log

An external log improves performance since the log updates
are saved to a different partition than its corresponding file
system.

To create the JFS file system with the log on an external
device, your system will need to have 2 unused partitions.
Our test system had /dev/hda6 and /dev/hdb1 as spare
partitions.

mkfs.jfs -j /dev/hdb1 /dev/hda6
mkfs.jfs version: 1.0.20 21-Jun-2002
Warning! All data on device /dev/hda6 will be lost!
Warning! All data on device /dev/hdb1 will be lost!
Continue? (Y/N) y
Format completed successfully.
10249438 kilobytes total disk space.

To mount the file system use the following mount
command:

mount -t jfs /dev/hda6 /jfs

So you don't have to mount this file system every time you
boot, you can add it to /etc/fstab. Make a backup
of /etc/fstab and edit it with you favorite editor. Add
the /dev/hda6 device. For example, add:

/dev/hda6 /jfs jfs defaults 1 2

A Performance Tweak for All File Systems

Linux records an atime, or access time,
whenever a file is read. However, access time
isn't very useful, and can be quite costly to
track.

To get a quick performance boost on any
kind of Linux file system, simply disable
access time updates with the mount option
noatime. For example, to disable access
times on a JFS partition, do something like
this in /etc/fstab:

/dev/hda6 /jfs jfs noatime 1 2

Page 14 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

Not Just for Reboots Anymore

Some people have the impression that journaling file
systems only provide fast restart times. As you've seen, this
isn't true. Considerable coding efforts have made journaling
file systems scalable, reliable, and fast.

Whether you're running an enterprise server, a cluster
supercomputer, or a small Web site, XFS, JFS, and ReiserFS
add credibility and oomph to Linux. Need a better reason to
switch to a journaling file system? Just imagine yourself in a
world without fsck. What will you do with all that extra
time?

Steve Best works in the Linux Technology Center of IBM in
Austin, Texas. He is currently working on the Journaled
File System (JFS) for Linux project. Steve has done
extensive work in operating system development with a
focus in the areas of file systems, internationalization, and
security. He can be reached at sbest@us.ibm .

Resources

Ext3:
http://www.zipworld.com.au/~akpm/linux/ext3

JFS for Linux: http://oss.software.ibm.com/jfs

ReiserFS: http://www.namesys.com

Linux XFS: http://oss.sgi.com/projects/xfs

Extended Attributes & Access Controls Lists:
http://acl.bestbits.at

© 2005 QuarterPower Media

Linux Magazine :: ClusterWorld Magazine :: VoIP Magazine

 Search Related Info

Page 15 of 15Linux Magazine - October 2002 | Feature Story | Journaling File Systems

5/18/2005http://www.linux-mag.com/2002-10/jfs_01.html

