CSE 451: Operating Systems
Winter 2006

Module 4
Processes

Ed Lazowska
lazowska@cs.washington.edu
Allen Center 570

Process management

« This module begins a series of topics on processes,
threads, and synchronization
— this is the most important part of the class
— there definitely will be several questions on these topics on
the midterm
« Today: processes and process management
— what are the OS units of execution?
how are they represented inside the OS?
— how is the CPU scheduled across processes?
— what are the possible execution states of a process?
« and how does the system move between them?

1/2/2006 © 2006 Gribble, Lazowska, Levy 2

The process

* The process is the OS's abstraction for execution
— the unit of execution
— the unit of scheduling
— the dynamic (active) execution context
« compared with program: static, just a bunch of bytes
« Process is often called a job, task, or sequential
process
— asequential process is a program in execution
« defines the instruction-at-a-time execution of a program

1/2/2006 © 2006 Gribble, Lazowska, Levy 3

What's in a process?

« A process consists of (at least):
— an address space
— the code for the running program
— the data for the running program
— an execution stack and stack pointer (SP)
« traces state of procedure calls made
— the program counter (PC), indicating the next instruction
— general-purpose processor registers and their values
— aset of OS resources
« open files, network connections, sound channels, ...
< In other words, it's all the stuff you need to run the
program
— ortore-start it, if it's interrupted at some point

1/2/2006 © 2006 Gribble, Lazowska, Levy 4

The process control block

* There’s a data structure called the process control block
(PCB) that holds all this stuff
— The PCB is identified by an integer process ID (PID)
* OS keeps all of a process’s hardware execution state in
the PCB when the process isn’t running
— PC, SP, registers, etc.
— when a process is unscheduled, the state is transferred out of
the hardware into the PCB
« Note: It's natural to think that there must be some
esoteric techniques being used
— fancy data structures that'd you'd never think of yourself
Wrong! It's pretty much just what you’d think of!

1/2/2006 © 2006 Gribble, Lazowska, Levy 5

Process states

« Each process has an execution state, which indicates
what it is currently doing
— ready: waiting to be assigned to CPU
« could run, but another process has the CPU
— running: executing on the CPU
« is the process that currently controls the CPU
* pop quiz: how many processes can be running simultaneously?
— waiting: waiting for an event, e.g., I/O
« cannot make progress until event happens
* As a process executes, it moves from state to state
— UNIX: run ps, STAT column shows current state
— which state is a process in most of the time?

1/2/2006 © 2006 Gribble, Lazowska, Levy 6

States of a process

dispatch / interrupt
schedule (unschedule)

exce[\?lion (1o,
page fault, etc.)

intefrupt
(/0O complete)

blocked

1/2/2006 © 2006 Gribble, Lazowska, Levy 7

The PCB revisited

« The PCB is a data structure with many, many fields:
— process ID (PID)
— execution state
— program counter, stack pointer, registers
— address space info
— UNIX username of owner
— scheduling priority
— accounting info
— pointers for state queues
¢ Inlinux:
— defined in task_struct (include/linux/sched.h)
— over 95 fields!!!

1/2/2006 © 2006 Gribble, Lazowska, Levy

A process’s address space

OXFFFFFFFF —

(dynamic allocated mem)
7 “— SP

i
address space heap
(dynamic allocated mem)

static data
(data segment)

code

“—PC
0x00000000 (text segment)

1/2/2006 © 2006 Gribble, Lazowska, Levy 9

PCBs and hardware state

* When a process is running, its hardware state is
inside the CPU
— PC, SP, registers
— CPU contains current values
* When the OS stops running a process (puts it in the
waiting state), it saves the registers’ values in the
PCB
— when the OS puts the process in the running state, it loads
the hardware registers from the values in that process’s PCB
¢ The act of switching the CPU from one process to
another is called a context switch
— timesharing systems may do 100s or 1000s of switches/sec.
— takes about 5 microseconds on today’s hardware

1/2/2006 © 2006 Gribble, Lazowska, Levy 10

State queues

* The OS maintains a collection of queues that
represent the state of all processes in the system
— typically one queue for each state
* e.g., ready, waiting, ...
— each PCB is queued onto a state queue according to the
current state of the process it represents
— as a process changes state, its PCB is unlinked from one
queue, and linked onto another
« Once again, this is just as straightforward as it
sounds! The PCBs are moved between queues,
which are represented as linked lists. There is no
magic!

1/2/2006 © 2006 Gribble, Lazowska, Levy 1

State queues

Ready queue header —

head ptr —— firefox pcb —\' emacs peb < |/ Is pcb
tail ptr

Wait queue header /
—— catpch | firefox pcb
\

* There may be many wait queues, one for each type
of wait (particular device, timer, message, ...)

1/2/2006 ©2006 Gribble, Lazowska, Levy 12

process ID

process state

program counter

stack pointer

T

E 32 general-purpose registers

address space info

username of owner

scheduling priority

accounting info

pointers for state queues

1/2/2006 © 2006 Gribble, Lazowska, Levy 13

PCBs and state queues

« PCBs are data structures

— dynamically allocated inside OS memory
* When a process is created:

— OS allocates a PCB for it

— OS initializes PCB

— OS puts PCB on the correct queue
¢ As a process computes:

— OS moves its PCB from queue to queue
* When a process is terminated:

— OS deallocates its PCB

1/2/2006 © 2006 Gribble, Lazowska, Levy 14

Process creation

* One process can create another process
— creator is called the parent
— created process is called the child
— UNIX: do ps, look for PPID field
— what creates the first process, and when?
* In some systems, parent defines or donates
resources and privileges for its children
— UNIX: child inherits parent’s userlD field, etc.
* When child is created, parent may either wait for it to
finish, or may continue in parallel, or both!

1/2/2006 © 2006 Gribble, Lazowska, Levy 15

UNIX process creation

« UNIX process creation through fork() system call
— creates and initializes a new PCB
— creates a new address space
— initializes new address space with a copy of the entire
contents of the address space of the parent
— initializes kernel resources of new process with resources of
parent (e.g., open files)
— places new PCB on the ready queue
¢ the fork() system call “returns twice”
— once into the parent, and once into the child
— returns the child’s PID to the parent
— returns 0 to the child
= fork() ="“clone me”

1/2/2006 © 2006 Gribble, Lazowska, Levy 16

testparent — use of fork()

int main(int argc, char **argv)
{
char *name = argv[0];
int pid = forkQ);
if (pid == 0) {
printf(“Child of %s is %d\n”,
name, pid);
return 0;
} else {
printf(“My child is %d\n”, pid);
return O;
}
}

1/2/2006 © 2006 Gribble, Lazowska, Levy 17

testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent

My child is 486

Child of testparent is O

spinlock% ./testparent

Child of testparent is 0O

My child is 571

1/2/2006 ©2006 Gribble, Lazowska, Levy 18

Exec vs. fork

* So how do we start a new program, instead of just

forking the old program?

— the exec() system call!

— int exec(char *prog, char ** argv)
= execQ)

— stops the current process

— loads program ‘prog’ into the address space

— initializes hardware context, args for new program

— places PCB onto ready queue

— note: does not create a new process!

1/2/2006 © 2006 Gribble, Lazowska, Levy 19

UNIX shells
int main(int argc, char **argv)
{
while (1) {
char *cmd = get_next_command();
int pid = fork(Q;
if (pid == 0) {
manipulate STDIN/STDOUT/STDERR fd’s
exec(cmd);
panic(“exec failed!”);
} else {
wait(pid);
}
3
}

1/2/2006 © 2006 Gribble, Lazowska, Levy 20

