
1

Improving the Reliability of
Commodity Operating

Systems

Hank Levy
Dept. of Computer Science & Engineering

University of Washington

The High Level Picture

• A lot of research effort in the OS community has gone
into performance, rather than reliability.

• The result: operating system crashes are still a huge
problem today
– 5% of Windows systems crash every day

• Device drivers are the biggest cause of crashes
– Drivers cause 85% of Windows XP crashes
– Drivers in Linux are 7 times buggier than the kernel

What is a Device Driver?

• 10s of thousands of device drivers exist
– Over 35K drivers on Win/XP!

• 81 drivers running on this laptop
• Drivers run inside the OS kernel

– A bug in a driver crashes the OS

• Small # of common interfaces

A module that translates high-level OS
requests to device-specific requests

Kernel

ApplicationApplication

OS Today

Virtual Memory

File Systems

Networking

Scheduling

…

Device Drivers

70% of Linux kernel code!

Why Do Drivers Fail?

• Complex and hard to write
– Must handle asynchronous events

• interrupts
– Must obey kernel programming rules

• Locking, synchronization
– Difficult to test and debug

• timing-related bugs
– Non-reproducible failures

• Often written by inexperienced programmers
• Code often not available to OS vendors

OS Today

Kernel
Driver

ApplicationApplication

2

Our Goal: OS With Reliability

Kernel
Driver

Application

Driver

Application

Our Objectives

Eliminate downtime caused by drivers

1. Prevent system crashes - isolation
2. Keep applications running - recovery

What we did

• Prevents the majority of driver-caused
crashes

• Requires no changes to existing drivers
• Requires only minor changes to the OS
• Minimally impacts performance

We designed and built a new Linux kernel
subsystem that:

Existing Kernels

Kernel
Driver

ApplicationApplication

Isolation

Kernel
Driver
Stack
Heap

Lightweight Kernel Protection Domains

ApplicationApplication

Shadow Drivers

• Shadow Driver Goals:
– Restore driver state after a failure so it can process requests as if it

had never failed
– Conceal failure from applications

• Generic code that:
– Normally:

• Records state-changing inputs
– On failure:

• Restarts driver
• Replays inputs to recover driver
• Impersonates driver to applications/OS during recovery

One shadow driver handles recovery for an entire class of
drivers

3

writ
e(

…)

write(…)

Shadow Driver Overview

Kernel

Device
Driver

Tap

Shadow
Driver

write(…)

Spoofing a Failed Driver

Shadow acts as driver
– Applications and OS unaware that driver failed
– No device control

General Strategies:
1. Answer request from log
2. Act busy
3. Block caller
4. Queue request
5. Drop request

Implementation Complexity

• Changes to existing code
– Kernel: 924 out of 1.1 million lines
– Device drivers: 0 out of 50,000 lines

• New code
– Isolation: 23,000 lines
– Recovery: 3,300 lines

Drivers Tested

ide-disk, ide-cdIDE Storage

Intel Pro/1000 Gigabit Ethernet,
AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,
SMC Etherpower 100

Network

Soundblaster Audigy,
Soundblaster 16, Soundblaster
Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Sound
DriversClass

Isolation Works

0

50

100

150

200

pcnet32 e1000 ide-disk sb
Driver

No Nooks

Nooks119

0

52

0
10

1

152

0

Recovery Works

0

20

40

60

80

100

Mp3
Player

Audio
Recorder

Remote
Copy

Sniffer Compiler Database

N
um

be
r o

f f
ai

lu
re

s

Driver Failures
Application Failures

Sound Net Storage

4

0

20

40

60

80

100

Mp3
Player

Audio
Recorder

Network
Send

Network
Receive

Compiler Database

R
el

at
iv

e
Pe

rf
or

m
an

ce
 (

%
)

No Nooks Nooks

Relative Performance

Sound Net Storage

Evaluation: Bottom Line

• Isolation works
– We can avoid crashes in the majority of driver

failures
• Recovery works

– We can keep applications running in the majority
of driver failures

• The cost is acceptable
– In many cases, the performance cost is

acceptable

Summary

• We took a very targeted and practical approach to
improving reliability

• We defined a set of new components and techniques
to create a new OS reliability layer

• We used these components to build isolation and
recovery services

• Our experiments demonstrate that:
– Nooks prevents 99% of the crashes caused by our tests
– Nooks keeps applications running in 98% of tested driver

failures
– There is high leverage in this approach

