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The High Level Picture

« Alot of research effort in the OS community has gone
into performance, rather than reliability.

* The result: operating system crashes are still a huge
problem today

— 5% of Windows systems crash every day

« Device drivers are the biggest cause of crashes
— Drivers cause 85% of Windows XP crashes
— Drivers in Linux are 7 times buggier than the kernel

What is a Device Driver?

A module that translates high-level OS
requests to device-specific requests

10s of thousands of device drivers exist
— Over 35K drivers on Win/XP!

« 81 drivers running on this laptop

¢ Drivers run inside the OS kernel

— A bug in a driver crashes the OS

« Small # of common interfaces

OS Today

Application Application

Kernel

Virtual Memory

File Systems
N Device Drivers

Scheduling

70% of Linux kernel code!

Why Do Drivers Fail?

* Complex and hard to write

— Must handle asynchronous events
« interrupts

— Must obey kernel programming rules
« Locking, synchronization

— Difficult to test and debug
« timing-related bugs

— Non-reproducible failures

« Often written by inexperienced programmers
¢ Code often not available to OS vendors
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Our Goal: OS With Reliability

Our Obijectives

Eliminate downtime caused by drivers

1. Prevent system crashes - isolation
2. Keep applications running - recovery
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What we did

We designed and built a new Linux kernel
subsystem that:

Prevents the majority of driver-caused
crashes

» Requires no changes to existing drivers
Requires only minor changes to the OS
Minimally impacts performance
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Lightweight Kernel Protection Domains

Shadow Drivers

« Shadow Driver Goals:

— Restore driver state after a failure so it can process requests as if it
had never failed

— Conceal failure from applications

« Generic code that:
— Normally:
» Records state-changing inputs
— On failure:
* Restarts driver
+ Replays inputs to recover driver
« Impersonates driver to applications/OS during recovery

=> One shadow driver handles recovery for an entire class of
drivers




Shadow Driver Overview
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Spoofing a Failed Driver

Shadow acts as driver
—  Applications and OS unaware that driver failed
—  No device control

General Strategies:
1. Answer request from log
2. Act busy
3. Block caller
4. Queue request
5. Drop request

Implementation Complexity

» Changes to existing code
— Kernel: 924 out of 1.1 million lines
— Device drivers: 0 out of 50,000 lines

* New code
— Isolation: 23,000 lines
— Recovery: 3,300 lines

Drivers Tested

Class Drivers

Sound Soundblaster Audigy,

Soundblaster 16, Soundblaster

Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Network Intel Pro/1000 Gigabit Ethernet,
AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,

SMC Etherpower 100
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Evaluation: Bottom Line

Isolation works

— We can avoid crashes in the majority of driver
failures

Recovery works

— We can keep applications running in the majority
of driver failures

The cost is acceptable

— In many cases, the performance cost is
acceptable
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We took a very targeted and practical approach to
improving reliability

We defined a set of new components and techniques
to create a new OS reliability layer

We used these components to build isolation and
recovery services

Our experiments demonstrate that:

— Nooks prevents 99% of the crashes caused by our tests

— Nooks keeps applications running in 98% of tested driver
failures

— There is high leverage in this approach




