Improving the Reliability of
Commodity Operating
Systems

Hank Levy
Dept. of Computer Science & Engineering
University of Washington

The High Level Picture

« Alot of research effort in the OS community has gone
into performance, rather than reliability.

* The result: operating system crashes are still a huge
problem today

— 5% of Windows systems crash every day

« Device drivers are the biggest cause of crashes
— Drivers cause 85% of Windows XP crashes
— Drivers in Linux are 7 times buggier than the kernel

What is a Device Driver?

A module that translates high-level OS
requests to device-specific requests

10s of thousands of device drivers exist
— Over 35K drivers on Win/XP!

« 81 drivers running on this laptop

¢ Drivers run inside the OS kernel

— A bug in a driver crashes the OS

« Small # of common interfaces

OS Today

Application Application

Kernel

Virtual Memory

File Systems
N Device Drivers

Scheduling

70% of Linux kernel code!

Why Do Drivers Fail?

* Complex and hard to write

— Must handle asynchronous events
« interrupts

— Must obey kernel programming rules
« Locking, synchronization

— Difficult to test and debug
« timing-related bugs

— Non-reproducible failures

« Often written by inexperienced programmers
¢ Code often not available to OS vendors

OS Today

Application

Kernel

Our Goal: OS With Reliability

Our Obijectives

Eliminate downtime caused by drivers

1. Prevent system crashes - isolation
2. Keep applications running - recovery

Application Application
Driver
Kernel >
What we did

We designed and built a new Linux kernel
subsystem that:

Prevents the majority of driver-caused
crashes

» Requires no changes to existing drivers
Requires only minor changes to the OS
Minimally impacts performance

Existing Kernels

Application Application

Driver
Kernel

Isolation

Application Application

Driver

Kernel

Lightweight Kernel Protection Domains

Shadow Drivers

« Shadow Driver Goals:

— Restore driver state after a failure so it can process requests as if it
had never failed

— Conceal failure from applications

« Generic code that:
— Normally:
» Records state-changing inputs
— On failure:
* Restarts driver
+ Replays inputs to recover driver
« Impersonates driver to applications/OS during recovery

=> One shadow driver handles recovery for an entire class of
drivers

Shadow Driver Overview

Device

Kernel

Spoofing a Failed Driver

Shadow acts as driver
— Applications and OS unaware that driver failed
— No device control

General Strategies:
1. Answer request from log
2. Act busy
3. Block caller
4. Queue request
5. Drop request

Implementation Complexity

» Changes to existing code
— Kernel: 924 out of 1.1 million lines
— Device drivers: 0 out of 50,000 lines

* New code
— Isolation: 23,000 lines
— Recovery: 3,300 lines

Drivers Tested

Class Drivers

Sound Soundblaster Audigy,

Soundblaster 16, Soundblaster

Live!, Intel 810 Audio, Ensoniq
1371, Crystal Sound 4232

Network Intel Pro/1000 Gigabit Ethernet,
AMD PCnet32, Intel Pro/100
10/100, 3Com 3c59x 10/100,

SMC Etherpower 100

'@ IDE Storage |ide-disk, ide-cd

Isolation Works

200
152 B No Nooks
150 119 B Nooks
100
52
50
o 0 0 0 1
pcnet32 e1000 ide-disk sb
Driver

Number of failures

Recovery Works

‘ Net ‘ ‘Storage‘

100

M Driver Failures
M Application Failures

80

Mp3 Audio Remote Sniffer ~ Compiler Database
Player Recorder Copy

Relative Performance (%)

Relative Performance

I No Nooks I Nooks

Evaluation: Bottom Line

Isolation works

— We can avoid crashes in the majority of driver
failures

Recovery works

— We can keep applications running in the majority
of driver failures

The cost is acceptable

— In many cases, the performance cost is
acceptable

Mp3 Audio Network Network Compiler — Database
Player Recorder Send Receive

We took a very targeted and practical approach to
improving reliability

We defined a set of new components and techniques
to create a new OS reliability layer

We used these components to build isolation and
recovery services

Our experiments demonstrate that:

— Nooks prevents 99% of the crashes caused by our tests

— Nooks keeps applications running in 98% of tested driver
failures

— There is high leverage in this approach

