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Architectural features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation
– synchronization instructions (e.g., atomic test-and-set)
– memory protection
– I/O control operations
– interrupts and exceptions
– protected modes of execution (kernel vs. user)
– privileged instructions
– system calls (and software interrupts)

• [2006] virtualization architectures (aka Intel discovers the early
1970s)
– Intel:  http://www.intel.com/technology/itj/2006/v10i3/1-hardware/1-

abstract.htm
– AMD:  http://enterprise.amd.com/us-en/AMD-Business/Business-

Solutions/Consolidation/Virtualization.aspx
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Privileged instructions

• some instructions are restricted to the OS
– known as protected or privileged instructions

• e.g., only the OS can:
– directly access I/O devices (disks, network cards)

• why?
– manipulate memory state management

• page table pointers, TLB loads, etc.
• why?

– manipulate special ‘mode bits’
• interrupt priority level
• why?

– halt instruction
• why?
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OS protection

• So how does the processor know if a privileged
instruction should be executed?
– the architecture must support at least two modes of

operation: kernel mode and user mode
• VAX, x86 support 4 protection modes

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel mode   (OS == kernel)

• Privileged instructions can only be executed in kernel
mode
– what happens if user mode attempts to execute a privileged

instruction?

10/1/07 © 2007 Bershad, Gribble, Lazowska, Levy, Zahorjan 5

Crossing protection boundaries

• So how do user programs do something privileged?
– e.g., how can you write to a disk if you can’t execute I/O

instructions?
• User programs must call an OS procedure

– OS defines a sequence of system calls
– how does the user-mode to kernel-mode transition happen?

• There must be a system call instruction, which:
– causes an exception (throws a software interrupt), which

vectors to a kernel handler
– passes a parameter indicating which system call to invoke
– saves caller’s state (registers, mode bit) so they can be

restored
– OS must verify caller’s parameters (e.g., pointers)
– must be a way to return to user mode once done
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A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

package arguments
trap to kernel mode

save registers
find sys_read( )

handler in
vector table

restore app
state, return to

user mode,
resume

trap handler

sys_read( ) kernel routine
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System call issues

• What would happen if kernel didn’t save state?
• Why must the kernel verify arguments?
• How can you reference kernel objects as arguments

or results to/from system calls?
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Memory protection

• OS must protect user programs from each other
– maliciousness, ineptitude

• OS must also protect itself from user programs
– integrity and security
– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program
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More sophisticated memory protection

• coming later in the course
• paging, segmentation, virtual memory

– page tables, page table pointers
– translation lookaside buffers (TLBs)
– page fault handling
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OS control flow

• After the OS has booted, all entry to the kernel
happens as the result of an event
– event immediately stops current execution
– changes mode to kernel mode, event  handler is called

• Kernel defines handlers for each event type
– specific types are defined by the architecture

• e.g.: timer event, I/O interrupt, system call trap
– when the processor receives an event of a given type, it

• transfers control to handler within the OS
• handler saves program state (PC, regs, etc.)
• handler functionality is invoked
• handler restores program state, returns to program
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Interrupts and exceptions

• Two main types of events: interrupts and exceptions
– exceptions are caused by software executing instructions

• e.g., the x86 ‘int’ instruction
• e.g., a page fault, or an attempted write to a read-only page
• an expected exception is a “trap”, unexpected is a “fault”

– interrupts are caused by hardware devices
• e.g., device finishes I/O
• e.g., timer fires
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I/O control

• Issues:
– how does the kernel start an I/O?

• special I/O instructions
• memory-mapped I/O

– how does the kernel notice an I/O has finished?
• polling
• interrupts

• Interrupts are basis for asynchronous I/O
– device performs an operation asynchronously to CPU
– device sends an interrupt signal on bus when done
– in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
• who populates the vector table, and when?

– CPU switches to address indicated by vector index specified
by interrupt signal
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Timers

• How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
– use a hardware timer that generates a periodic interrupt
– before it transfers to a user program, the OS loads the timer

with a time to interrupt
• “quantum” – how big should it be set?

– when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should the timer be privileged?
– for reading or for writing?
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Synchronization

• Interrupts cause a wrinkle:
– may occur any time, causing code to execute that interferes

with code that was interrupted
– OS must be able to synchronize concurrent processes

• Synchronization:
– guarantee that short instruction sequences (e.g., read-

modify-write) execute atomically
– one method: turn off interrupts before the sequence, execute

it, then re-enable interrupts
• architecture must support disabling interrupts

– another method:  have special complex atomic instructions
• read-modify-write
• test-and-set
• load-linked store-conditional
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“Concurrent programming”

• Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
– modern “event-oriented” application programming is a

middle ground

• Arises from the architecture
• Can be sugar-coated, but cannot be totally

abstracted away
• Huge intellectual challenge

– Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming
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Some questions

• Why wouldn’t you want a user program to be able to
access an I/O device (e.g., the disk) directly?

• OK, so what keeps this from happening?  What
prevents user programs from directly accessing the
disk?

• So, how does a user program cause disk I/O to
occur?

• What prevents a user program from scribbling on the
memory of another user program?

• What prevents a user program from scribbling on the
memory of the operating system?

• What prevents a user program from running away
with the CPU?


