
1

CSE 451: Operating Systems
 Winter 2007

Module 6
Synchronization

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 2

Synchronization

• Threads cooperate in multithreaded programs
– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server
– also, to coordinate their execution

• e.g., a disk reader thread hands off blocks to a network writer
thread through a circular buffer

disk
reader
thread

network
writer
thread

circular
buffer

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 3

• For correctness, we have to control this cooperation
– must assume threads interleave executions arbitrarily and at

different rates
• scheduling is not under application writers’ control

• We control cooperation using synchronization
– enables us to restrict the interleaving of executions

• Note: this also applies to processes, not just threads
– (I’ll almost never say “process” again!)

• It also applies across machines in a distributed
system

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 4

Shared resources

• We’ll focus on coordinating access to shared
resources
– basic problem:

• two concurrent threads are accessing a shared variable
• if the variable is read/modified/written by both threads, then

access to the variable must be controlled
• otherwise, unexpected results may occur

• Over the next several lectures, we’ll look at:
– mechanisms to control access to shared resources

• low level mechanisms like locks
• higher level mechanisms like mutexes, semaphores, monitors,

and condition variables
– patterns for coordinating access to shared resources

• bounded buffer, producer-consumer, …

2

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 5

The classic example

• Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

• Now suppose that you and your S.O. share a bank
account with a balance of $100.00
– what happens if you both go to separate ATM machines,

and simultaneously withdraw $10.00 from the account?

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 6

• Represent the situation by creating a separate thread
for each person to do the withdrawals
– have both threads run on the same bank mainframe:

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 7

Interleaved schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?

• How often is this unfortunate sequence likely to
occur?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Execution sequence
as seen by CPU

context switch

context switch

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 8

• Which interleavings are ok? Which are not?

Other Execution Orders

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

3

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 9

int xfer(from, to, amt) {

 int bal = withdraw(from, amt);

 deposit(to, amt);

 return bal;

}

How About Now?

int xfer(from, to, amt) {

 int bal = withdraw(from, amt);

 deposit(to, amt);

 return bal;

}

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 10

 i++;

And This?

 i++;

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 11

The crux of the matter

• The problem is that two concurrent threads (or
processes) access a shared resource (account)
without any synchronization
– creates a race condition

• output is non-deterministic, depends on timing

• We need mechanisms for controlling access to
shared resources in the face of concurrency
– so we can reason about the operation of programs

• essentially, re-introducing determinism

• Synchronization is necessary for any shared data
structure
– buffers, queues, lists, hash tables, scalars, …

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 12

What resources are shared?

• Local variables are not shared
– refer to data on the stack, each thread has its own stack
– never pass/share/store a pointer to a local variable on

another thread’s stack!

• Global variables are shared
– stored in the static data segment, accessible by any thread

• Dynamic objects are shared
– stored in the heap, shared if you can name it

• in C, can conjure up the pointer
– e.g., void *x = (void *) 0xDEADBEEF

• in Java, strong typing prevents this
– must pass references explicitly

4

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 13

Mutual exclusion

• We want to use mutual exclusion to synchronize
access to shared resources

• Mutual exclusion makes reasoning about program
behavior easier
– making reasoning easier leads to fewer bugs

• Code that uses mutual exclusion to synchronize its
execution is called a critical section
– only one thread at a time can execute in the critical section
– all other threads are forced to wait on entry
– when a thread leaves a critical section, another can enter

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 14

Critical section requirements

• Critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section
– progress

• if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will

eventually enter the critical section
– assumes threads eventually leave critical sections

• vs. fairness?
– performance

• the overhead of entering and exiting the critical section is small
with respect to the work being done within it

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 15

Mechanisms for building critical sections

• Locks
– very primitive, minimal semantics; used to build others

• Semaphores
– basic, easy to get the hang of, hard to program with

• Monitors
– high level, requires language support, implicit operations
– easy to program with; Java “synchronized()” as an

example

• Messages
– simple model of communication and synchronization based

on (atomic) transfer of data across a channel
– direct application to distributed systems

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 16

Locks

• A lock is a object (in memory) that provides the following two
operations:
– acquire(): a thread calls this before entering a critical section
– release(): a thread calls this after leaving a critical section

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the lock
– acquire() does not return until the caller holds the lock

• at most one thread can hold a lock at a time (usually)
– so: what can happen if the calls aren’t paired?

• Two basic flavors of locks
– spinlock
– blocking (a.k.a. “mutex”)

5

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 17

Using locks

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section?

– is this ok?

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 18

Spinlocks

• How do we implement locks? Here’s one attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock {

 int held = 0;

}

void acquire(lock) {

 while (lock->held);

 lock->held = 1;

}

void release(lock) {

 lock->held = 0;

}

the caller “busy-waits”,

or spins, for lock to be

released ⇒ hence spinlock

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 19

Implementing locks (cont.)

• Problem is that implementation of locks has critical
sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted
• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …
– disable/reenable interrupts

• to prevent context switches

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 20

Spinlocks redux: Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single instruction…

bool test_and_set(bool *flag) {

 bool old = *flag;

 *flag = True;

 return old;

}

6

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 21

Spinlocks redux: Test-and-Set

• So, to fix our broken spinlocks, do:

– mutual exclusion?
– progress?
– bounded waiting?
– performance?

struct lock {

 int held = 0;

}

void acquire(lock) {

 while(test_and_set(&lock->held));

}

void release(lock) {

 lock->held = 0;

}

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 22

Reminder of use …

• How does a thread blocked on an “acquire” (that is,
stuck in a test-and-set loop) yield the CPU?
– calls yield() (spin-then-block)
– there’s an involuntary context switch

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 23

Problems with spinlocks

• Spinlocks work, but are horribly wasteful!
– if a thread is spinning on a lock, the thread holding the lock

cannot make progress
– And neither can anyone else!

• Only want spinlocks as primitives to build higher-level
synchronization constructs
– Why is this okay?

• When might the above points be misleading?

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 24

Another approach: Disabling interrupts

struct lock {

}

void acquire(lock) {

 cli(); // disable interrupts

}

void release(lock) {

 sti(); // reenable interrupts

}

7

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 25

Problems with disabling interrupts

• Only available to the kernel
– Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor
– Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak
havoc with devices

• Just as with spinlocks, you only want to use disabling
of interrupts to build higher-level synchronization
constructs

10/13/07 © 2006 Gribble, Lazowska, Levy, Zahorjan 26

Summary

• Synchronization can be provided by locks,
semaphores, monitors, messages …

• Locks are the lowest-level mechanism
– very primitive in terms of semantics – error-prone
– implemented by spin-waiting (crude) or by disabling

interrupts (also crude, and can only be done in the kernel)

• In our next exciting episode …
– semaphores are a slightly higher level abstraction

• less crude implementation too
– monitors are significantly higher level

• utilize programming language support to reduce errors

