CSE 451: Operating Systems Autumn 2008

Module 5 Threads

Hank Levy

What's in a process?

- · A process consists of (at least):
 - an address space
 - the code for the running program
 - the data for the running program
 - an execution stack and stack pointer (SP)
 - traces state of procedure calls made
 - the program counter (PC), indicating the next instruction
 - a set of general-purpose processor registers and their values
 - a set of OS resources
 - open files, network connections, sound channels, ...
- · That's a lot of concepts bundled together!

10/5/2008 HML 2

Concurrency

- Imagine a web server, which might like to handle multiple requests concurrently
 - equests concurrently

 While waiting for the credit card server to approve a purchase for
 one client, it could be retrieving the data requested by another
 client from disk, and assembling the response for a third client from
 cached information
- Imagine a web client (browser), which might like to initiate multiple requests concurrently
 - The CSE home page has 46 'src= ..." html commands, each of which is going to involve a lot of sitting around! Wouldn't it be nice to be able to launch these requests concurrently?
- Imagine a parallel program running on a multiprocessor, which might like to concurrently employ multiple processors
 - For example, multiplying a large matrix split the output matrix into k regions and compute the entries in each region concurrently using k processors

10/5/2008 HML 3

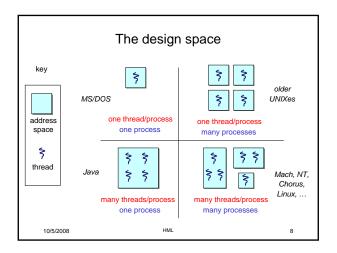
What's needed?

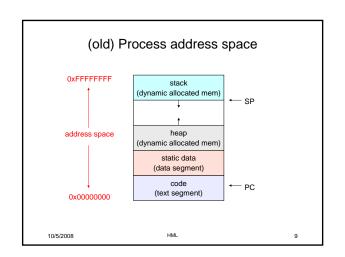
- In each of these examples of concurrency (web server, web client, parallel program):
 - Everybody wants to run the same code
 - Everybody wants to access the same data
 - Everybody has the same privileges
 - Everybody uses the same resources (open files, network connections, etc.)
- But you'd like to have multiple hardware execution states:
 - an execution stack and stack pointer (SP)
 - traces state of procedure calls made
 - $-\,$ the program counter (PC), indicating the next instruction
 - a set of general-purpose processor registers and their values

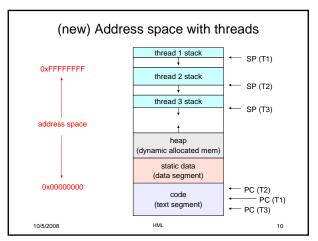
How could we achieve this?

- · Given the process abstraction as we know it:
 - fork several processes
 - cause each to map to the same address space to share data
 see the shmget() system call for one way to do this (kind of)
- This is like making a pig fly it's really inefficient
 - space: PCB, page tables, etc.
 - time: creating OS structures, fork and copy addr space, etc.
- · Some equally bad alternatives for some of the cases:
 - Entirely separate web servers
 - Asynchronous programming (explicity programming of nonblocking I/Os) in the web client (browser)

10/5/2008 HML 5


Can we do better?


- · Key idea:
 - separate the concept of a process (address space, etc.)
 - from that of a minimal "thread of control" (execution state: PC, etc.)
- This execution state is usually called a thread, or sometimes, a lightweight process


10/5/2008 HML

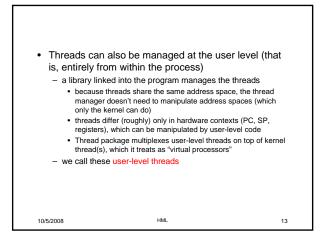
Threads and processes

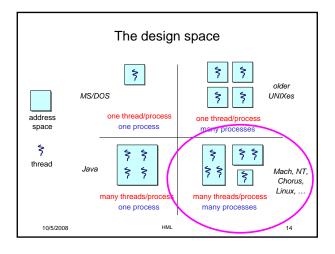
- Most modern OS's (Mach, Chorus, Win/XP, modern Unix) therefore support two entities:
 - the process, which defines the address space and general process attributes (such as open files, etc.)
 - the thread, which defines a sequential execution stream within a process
- A thread is bound to a single process
 - processes, however, can have multiple threads executing within them
 - sharing data between threads is cheap: all see same address space
- · Threads become the unit of scheduling
 - processes are just containers in which threads execute

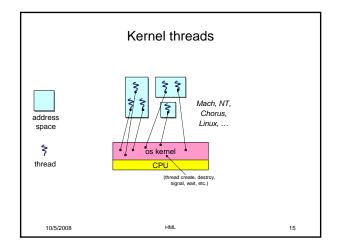
Process/thread separation

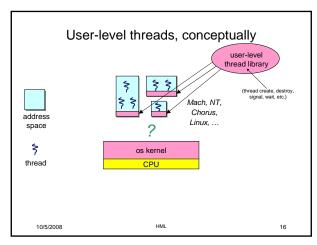
- Concurrency (multithreading) is useful for:
 - handling concurrent events (e.g., web servers and clients)
 - building parallel programs (e.g., matrix multiply, ray tracing)
 - improving program structure (the Java argument)
- · Multithreading is useful even on a uniprocessor
 - even though only one thread can run at a time
- Supporting multithreading that is, separating the concept of a process (address space, files, etc.) from that of a minimal thread of control (execution state), is a big win

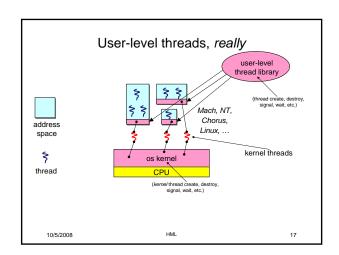
11

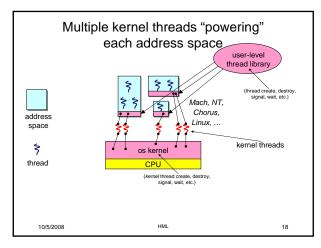

- creating concurrency does not require creating new processes
- "faster better cheaper"


10/5/2008


"Where do threads come from, Mommy?"


- · Natural answer: the kernel is responsible for creating/managing threads
 - for example, the kernel call to create a new thread would
 - allocate an execution stack within the process address space
 - · create and initialize a Thread Control Block
 - stack pointer, program counter, register values
 - stick it on the ready queue
 - we call these kernel threads


HML 10/5/2008 12



Kernel threads

- OS now manages threads and processes
 - all thread operations are implemented in the kernel
 - OS schedules all of the threads in a system
 - if one thread in a process blocks (e.g., on I/O), the OS knows about it, and can run other threads from that process
 - possible to overlap I/O and computation inside a process
- · Kernel threads are cheaper than processes
 - less state to allocate and initialize
- But, they're still pretty expensive for fine-grained use (e.g., orders of magnitude more expensive than a procedure call)
 - thread operations are all system calls
 - context switch
 - · argument checks
 - must maintain kernel state for each thread

10/5/2008 HML 19

User-level threads

- To make threads cheap and fast, they need to be implemented at the user level
 - managed entirely by user-level library, e.g. libpthreads.a
- · User-level threads are small and fast
 - each thread is represented simply by a PC, registers, a stack, and a small thread control block (TCB)
 - creating a thread, switching between threads, and synchronizing threads are done via procedure calls
 - no kernel involvement is necessary!
 - user-level thread operations can be 10-100x faster than kernel threads as a result

Performance example

- On a 700MHz Pentium running Linux 2.2.16:
 - Processes
 - fork/exit: 251 μs
 - Kernel threads
 - pthread_create()/pthread_join(): 94 μs
 - User-level threads
 - pthread_create()/pthread_join: 4.5 μS

10/5/2008 HML

User-level thread implementation

- The kernel thread (the kernel-controlled executable entity associated with the address space) executes the code in the address space
- This code includes the thread support library and its associated thread scheduler
- The thread scheduler determines when a thread runs
 - it uses queues to keep track of what threads are doing: run, ready, wait
 - just like the OS and processes
 - but, implemented at user-level as a library

10/5/2008 HML 22

Thread interface

- This is taken from the POSIX pthreads API:
 - t = pthread_create(attributes, start_procedure)
 - creates a new thread of control
 - new thread begins executing at start_procedure
 - pthread_cond_wait(condition_variable)
 - the calling thread blocks, sometimes called thread_block()
 - pthread_signal(condition_variable)
 - starts the thread waiting on the condition variable
 - pthread_exit()
 - · terminates the calling thread
 - pthread_wait(t)
 - waits for the named thread to terminate

10/5/2008 HML 23

How to keep a thread from hogging the CPU?

- Strategy 1: force everyone to cooperate
 - a thread willingly gives up the CPU by calling yield()
 - yield() calls into the scheduler, which context switches to another ready thread
 - what happens if a thread never calls yield()?
- Strategy 2: use preemption
 - scheduler requests that a timer interrupt be delivered by the OS periodically
 - usually delivered as a UNIX signal (man signal)
 - signals are just like software interrupts, but delivered to user-level by the OS instead of delivered to OS by hardware
 - at each timer interrupt, scheduler gains control and context switches as appropriate

Thread context switch

- · Very simple for user-level threads:
 - save context of currently running thread
 push machine state onto thread stack
 - restore context of the next thread
 - · pop machine state from next thread's stack
 - return as the new thread
 - · execution resumes at PC of next thread
- · This is all done by assembly language
 - it works at the level of the procedure calling convention
 - thus, it cannot be implemented using procedure calls

10/5/2008 HML

What if a thread tries to do I/O?

- The kernel thread "powering" it is lost for the duration of the (synchronous) I/O operation!
- Could have one kernel thread "powering" each userlevel thread
 - "common case" operations (e.g., synchronization) would be quick
- Could have a limited-size "pool" of kernel threads "powering" all the user-level threads in the address space
 - the kernel will be scheduling its threads obliviously to what's going on at user-level

10/5/2008 HML 26

What if the kernel preempts a thread holding a lock?

- Other threads will be unable to enter the critical section and will block (stall)
 - tradeoff, as with everything else
- Solving this requires coordination between the kernel and the user-level thread manager
 - "scheduler activations"
 - a research paper from UW with huge effect on industry
 - · each process can request one or more kernel threads
 - process is given responsibility for mapping user-level threads onto kernel threads
 - kernel promises to notify user-level before it suspends or destroys a kernel thread
 - ACM TOCS 10,1

10/5/2008 HML 27

Summary

- · You really want multiple threads per address space
- Kernel threads are much more efficient than processes, but they're still not cheap
 - all operations require a kernel call and parameter verification
- User-level threads are:
 - fast as blazes
 - great for common-case operations
 - creation, synchronization, destruction
 - can suffer in uncommon cases due to kernel obliviousness
 - I/O
- preemption of a lock-holder
- · Scheduler activations are the answer
 - pretty subtle though