

What is a distributed system?

- There are several levels of distribution.
- Earliest systems used simple explicit network programs:
- FTP: file transfer program
- Telnet (rlogin): remote login program
- mail
- remote job entry (or rsh): run jobs remotely
- Each system was a completely autonomous independent system, connected to others on the network

Distributed Systems

- Nearly all systems today are distributed in some way, e.g.:
they use email
- they access files over a network
- they access printers over a network
- they are backed up over a network
- they share other physical or logical resources
- they cooperate with other people on other machines
- they receive video, audio, etc.

Loosely-Coupled Systems

- Most distributed systems are "loosely-coupled":
- Each CPU runs an independent autonomous OS.
- Hosts communicate through message passing.
- Computer don't really trust each other.
- Some resources are shared, but most are not.
- The system may look differently from different hosts.
- Typically, communication times are long.

Closely-Coupled Systems

- A distributed system becomes more "closely coupled" as it:
- appears more uniform in nature
- runs a "single" operating system
- has a single security domain
- shares all logical resources (e.g., files)
- shares all physical resources (CPUs, memory, disks, printers, etc.)
- In the limit, a distributed system looks to the user as if it were a centralized timesharing system, except that it's constructed out of a distributed collection of hardware and software components.

Tightly-Coupled Systems

- A "tightly-coupled" system usually refers to a multiprocessor.
- Runs a single copy of the OS with a single job queue
- has a single address space
- usually has a single bus or backplane to which all processors and memories are connected
- has very low communication latency
- processors communicate through shared memory

Some Issues in Distributed Systems

- Transparency (how visible is the distribution)
- Security
- Reliability
- Performance
- Scalability
- Programming models
- Communications models

Distribution and the OS

- There are various issues that the OS must deal with:
- how to provide efficient network communication
- what protocols to use
- what is the application interface to remote apps (although this might be a language issue)
- protection of distributed resources

The Network

- There are various network technologies that can be used to interconnect nodes.
- In general, Local Area Networks (LANs) are used to connect hosts within a building. Wide Area Networks (WANs) are used across the country or planet.
- We are at an interesting point, as network technology is about to see an order-of-magnitude performance increase. This will have a huge impact on the kinds of systems we can build.
- Routing
- Bandwidth and contention
- Latency
- Reliability
- Efficiency
- Cost
- Scalability

Issues in Networking

Traditionally, two ways to handle networking

- Circuit Switching

- what you get when you make a phone call
- good when you require constant bit rate
- good for reserving bandwidth (refuse connection if bandwidth not available)
- Packet Switching
- what you get when you send a bunch of letters
- network bandwidth consumed only when sending
- packets are routed independently
- packetizing may reduce delays (using parallelism)
- Phone systems are moving to packet switching because of the Internet and the reduced equipment cost!

121/12008
14

Data link layer: Ethernet

- Broadcast network

- CSMA-CD: Carrier Sense Multiple Access with Collision Detection
- recall the "standing in a circle, drinking beer and telling stories" analogy
- Packetized - fixed
- Every computer has a unique physical address - 00-08-74-C9-C8-7E

Network layer: IP

- Internet Protocol (IP)
- routes packets across multiple networks, from source to destination
- Every computer has a unique Internet address - 128.208.3.200
- Individual networks are connected by routers that have physica addresses (and interfaces) on each network

DNS

- A separate really hairy protocol, DNS (the Domain Name Service), maps from intelligible names (cs.washington.edu) to IP addresses (128.208.3.200)
- So to send a packet to a destination
- use DNS to convert domain name to IP address
- prepare IP packet, with payload prefixed by IP address
- determine physical address of appropriate router
- encapsulate IP packet in Ethernet packet with appropriate physical address
- blast away!
- Detail: port number gets you to a specific address space on a system

TCP/IP summary

- Using TCP/IP and lower layers, we can get multipacket messages delivered reliably from address space A on machine B to address space C on machine D, where machines B and D are many heterogeneous network hops apart, without knowing any of the underlying details
- Higher protocol layers facilitate specific services
- email: smtp
- web: http
- file transfer: ftp
- remote login: telnet

New applications will define the Internet

- VOIP (voice over IP)
- Streaming real-time video
- Multi-player games
- Other stuff that you'll invent...

