
1

Remote Procedure Call

Hank Levy

12/1/2008 2

Clients and Servers
• A common model for structuring distributed computation is via the

client/server paradigm
• A server is a program (or collection of programs) that provide some service,

e.g., file service, name service, …
• The server may exist on one or more nodes.
• A client is a program that uses the service.
• A client first binds to the server, I.e., locates it in the network and establishes a

connection.
• The client then sends requests to perform actions; this is done by sending

messages that indicate which service is desired, along with params. The server
returns a response.

12/1/2008 3

The Problem with Messages

• While messages provide very flexible communication, they also have certain
problems:

– requires that programmer worry about message formats
– messages must be packed and unpacked
– messages have to be decoded by server to figure out what is requested
– messages are often asynchronous
– they may require special error handling functions

• Basically, messages are not a natural programming model for most
programmers.

12/1/2008 4

Procedure Call
• A more natural way to communicate is through procedure call:

– every language supports it
– semantics are well defined and understood
– natural for programmers to use

• Basic idea: let’s just define a server as a module that exports a set of
procedures that can be called by client programs.

• To use the server, the client just does a procedure call, as if it were linked with
the server

call

return
Client Server

2

12/1/2008 5

(Remote) Procedure Call

• So, we would like to use procedure call as a model for
distributed communication.

• Lots of issues:
– how do we make this invisible to the programmer?
– what are the semantics of parameter passing?
– how is binding done (locating the server)?
– how do we support heterogeneity (OS, arch., language)
– etc.

12/1/2008 6

Remote Procedure Call

• The basic model for Remote Procedure Call (RPC) was
described by Birrell and Nelson in 1980, based on work
done at Xerox PARC.

• Goals was to make RPC look as much like local PC as
possible.

• Used computer/language support.
• There are 3 components on each side:

– a user program (client or server)
– a set of stub procedures
– RPC runtime support

12/1/2008 7

RPC

• Basic process for building a server:
– Server program defines the server’s interface using an interface

definition language (IDL)
– The IDL specifies the names, parameters, and types for all client-

callable server procedures
– A stub compiler reads the IDL and produces two stub procedures

for each server procedure: a client-side stub and a server-side stub
– The server writer writes the server and links it with the server-side

stubs; the client writes her program and links it with the client-side
stubs.

– The stubs are responsible for managing all details of the remote
communication between client and server.

12/1/2008 8

RPC Stubs

• Basically, a client-side stub is a procedure that looks to the
client as if it were a callable server procedure.

• A server-side stub looks to the server as if it’s a calling
client.

• The client program thinks it is calling the server; in fact,
it’s calling the client stub.

• The server program thinks it’s called by the client; in fact,
it’s called by the server stub.

• The stubs send messages to each other to make the RPC
happen.

3

12/1/2008 9

RPC Call Structure

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

begin foo...

end foo

client
program

client
stub

RPC
runtime

RPC
runtime

server
stub

server
program

Call

client makes
local call to
stub proc.

stub builds msg
packet, inserts
params

runtime sends
msg to remote
node

server is
called by
its stub

stub unpacks
params and
makes call

runtime
receives msg
and calls stub

call foo

send msg

call foo

msg received

12/1/2008 10

RPC Return Structure

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

begin foo...

end foo

client
program

client
stub

RPC
runtime

RPC
runtime

server
stub

server
program

return

client continues

stub unpacks
msg, returns
to caller

runtime
receives msg,
calls stub

server proc
returns

stub builds
result msg
with output
args

runtime
responds
to original
msg

return

msg received

return

send msg

12/1/2008 11

RPC Binding

• Binding is the process of connecting the client and server
• The server, when it starts up, exports its interface,

identifying itself to a network name server and telling the
local runtime its dispatcher address.

• The client, before issuing any calls, imports the server,
which causes the RPC runtime to lookup the server
through the name service and contact the requested server
to setup a connection.

• The import and export are explicit calls in the code.

12/1/2008 12

RPC Marshalling

• Marshalling is the packing of procedure parameters into a
message packet.

• The RPC stubs call type-specific procedures to marshall
(or unmarshall) all of the parameters to the call.

• On the client side, the client stub marshalls the parameters
into the call packet; on the server side the server stub
unmarshalls the parameters in order to call the server’s
procedure.

• On the return, the server stub marshalls return parameters
into the return packet; the client stub unmarshalls return
parameters and returns to the client.

4

12/1/2008 13

RPC Final

• RPC is the most common model now for communications
in distributed applications.

• RPC is essentially language support for distributed
programming.

• RPC relies on a stub compiler to automatically produce
client/server stubs from the IDL server description.

• RPC is commonly used, even on a single node, for
communication between applications running in different
address spaces. In fact, most RPCs are intra-node.

