
1

1

Section 5

Synchronization primitives

(Many slides taken from Winter 2006)
2

Announcements

� Assignment grades online

� Please check them and report bugs to TAs

� Mailing list for TAs:

� cse451-tas@cs.washington.edu

� Faster response time

� Late project 0s were not downgraded

� Next ones will!

� Hand homework 2 back

� Any questions?? (project 2, class, midterm)

3

Synchronization

High-level
� Monitors
� Java synchronized method

OS-level support
� Special variables – mutex, futex, semaphor, condition var
� Message passing primitives

Low-level support
� Disable/enable interrupts
� Atomic instructions (test_and_set)

4

Disabling/Enabling Interrupts

� Prevents context-switches during execution of critical
sections

� Sometimes necessary
� E.g. to prevent further interrupts during interrupt handling

� Many problems

Thread B:

disable_irq()

critical_section()

enable_irq()

Thread A:

disable_irq()

critical_section()

enable_irq()

5

Disabling/Enabling Interrupts

� Prevents context-switches during execution of critical
sections

� Sometimes necessary
� E.g. to prevent further interrupts during interrupt handling

� Many problems

� E.g., an interrupt may be shared

� How does it work on multi-processors?

Thread B:

disable_irq()

critical_section()

enable_irq()

Thread A:

disable_irq()

critical_section()

enable_irq()

6

Hardware support

� Atomic instructions:
� test_and_set

� Compare-exchange (x86)

� Use these to implement higher-level primitives
� E.g. test-and-set on x86 (given to you for part 4) is
written using compare-exchange:

� compare_exchange(lock_t *x, int y, int z):

if(*x == y)
*x = z;
return y;

else
return *x;

� test_and_set(lock_t *l) {

?

}

2

7

Looking ahead: preemption

� You can start inserting synchronization code

� disable/enable interrupts

� atomic_test_and_set

� Where would you use these?

8

Synchronization

High-level
� Monitors
� Java synchronized method

OS-level support
� Special variables – mutex, futex, semaphor, condition var
� Message passing primitives

Low-level support
� Disable/enable interrupts
� Atomic instructions

• Used to implement
higher-level sync primitives
(in the kernel typically)

• Why not use in apps?

9

Semaphore review

� Semaphore = a special variable
� Manipulated atomically via two operations:

� P (wait)

� V (signal)

� Has a counter = number of available resources
� P decrements it

� V increments it

� Has a queue of waiting threads
� If execute wait() and semaphore is free, continue

� If not, block on that waiting queue

� signal() unblocks a thread if it’s waiting

� Mutex is bi-value semaphore (capacity 1)
10

Condition Variable

� A “place” to let threads wait for a certain event to occur
while holding a lock

� It has:
� Wait queue

� Three functions: wait, signal, and broadcast
� wait – sleep until the event happens

� signal – event/condition has occurred. If wait queue nonempty,
wake up one thread, otherwise do nothing

� Do not run the woken up thread right away

� FIFO determines who wakes up

� broadcast – just like signal, except wake up all threads

� In part 2, you implement all of these

� Typically associated with some logical condition in
program

11

Condition Variable (2)

� cond_wait(sthread_cond_t cond,

sthread_mutex_t lock)

� Should do the following atomically:

� Release the lock (to allow someone else to get in)

� Add current thread to the waiters for cond

� Block thread until awoken

� Read man page for
pthread_cond_[wait|signal|broadcast]

� Must be called while holding lock! -- Why?

12

Semaphores vs. CVs

3

13

Semaphores vs. CVs

Semaphores

� Used in apps

� wait() does not always
block the caller

� signal() either releases
a blocked thread, if
any, or increases sem.
counter.

Condition variables

� Typically used in monitors

� Wait() always blocks
caller

� Signal() either releases
blocked thread(s), if any,
or the signal is lost
forever.

14

Sample synchronization problem

Late-Night Pizza

� A group of students study for cse451 exam

� Can only study while eating pizza

� Each student thread executes the following:
� while (must_study) {

pick up a piece of pizza;

study while eating the pizza;

}

� If a student finds pizza is gone, the student goes to sleep
until another pizza arrives

� First student to discover pizza is gone orders a new one.

� Each pizza has S slices.

15

Late-Night Pizza

� Synchronize student threads and pizza delivery
thread

� Avoid deadlock

� When out of pizza, order it exactly once

� No piece of pizza may be consumed by more
than one student

16

Semaphore / mutex solution

Student {

while (must_study) {

P(pizza);

acquire(mutex);

num_slices--;

if (num_slices==0)

// took last slice

V(deliver);

release(mutex);

study();

}

}

shared data:

semaphore_t pizza; (counting sema, init to 0, represent

number of available pizza resources)

semaphore_t deliver; (init to 1)

int num_slices = 0;

mutex_t mutex; (init to 1) // guard updating of num_slices

DeliveryGuy {

while (employed) {

P(deliver);

make_pizza();

acquire(mutex);

num_slices=S;

release(mutex);

for (i=0; i < S; i++)

V(pizza);

}

}

17

Condition Variable Solution

Student() {

while(diligent) {

mutex.lock();

if(slices > 0) {

slices--;

}

else {

if(!has_been_ordered) {

order.signal(mutex);

has_been_ordered = true;

}

deliver.wait(mutex);

}

mutex.unlock();

Study();

}

}

int slices=0;

Condition order, deliver;

Lock mutex;

bool has_been_ordered = false;

DeliveryGuy() {

while(employed) {

mutex.lock();

order.wait(mutex);

makePizza();

slices = S;

has_been_ordered = false;

mutex.unlock();

deliver.broadcast();

}

}

18

Monitors: preview

� One thread inside at a time

� Lock + a bunch of condition variables (CVs)

� CVs used to allow other threads to access the monitor
while one thread waits for an event to occur

shared data

f() { … }

g() { … }

h() { … }

Entry set: queue of threads

trying to enter the monitor

CV

operations (procedures)
at most one thread

in monitor at a

time

CV

Wait sets

4

19

Monitors in Java

� Each object has its own monitor
Object o

� The java monitor supports two types of
synchronization:

� Mutual exclusion
synchronized(o) { … }

� Cooperation
synchronized(o) { O.wait(); }

synchronized(o) { O.notify(); }

