
1

1

CSE451 – Section 6

Project 2 (parts 4,5,6)
Short recap of a few topics for
midterm

2

Project 2, part 4 - web server

� web/sioux.c – singlethreaded web server

� Read in command line args, run the web server loop

� web/sioux_run.c – the webserver loop
� Open a socket to listen for connections (listen)

� Wait for a connection (accept)

� Handle it
� Parse the HTTP request

� Find and read the requested file (www root is ./docs)

� Send the file back

� Close the connection

3

What you need to do

� Make the web server multithreaded

� Create a thread pool

� A bunch of threads waiting for work

� Number of threads = command-line arg

� Wait for a connection

� Find an available thread to handle connection

� Current request waits if all threads busy

� Once a thread grabs onto connection, it uses
the same processing code as before.

4

Hints

� Each connection is identified by a socket returned
by accept
� Which is just an int
� Simple management of connections among threads

� Threads should sleep while waiting for a new
connection
� Condition variables are perfect for this

� Don’t forget to protect any global variables
� Use part 2 mutexes, CVs

� Develop + test with pthreads initially

� Mostly modify sioux_run.c and/or your own files
� Stick to the sthread.h interface!

5

Part 5 - Preemption

� What we give you:
� Timer interrupts
� Primitives to turn interrupts on and off

� Synch primitives atomic_test_and_set, atomic_clear

� What you have to do:
� Add code that will run every time a timer interrupt is generated

� Add synchronization to your part 1 and part 2 implementations so
that everything works with preemptive thread scheduling

� WARNING: The code that we have provided to support
preemption works correctly only on the x86 architecture!
Do not attempt using this portion of the assignment on a
Mac or other non-x86 architecture!

6

What we give you:
� sthread_preempt.h (implemented in .c):

/* start preemption - func will be called every period microseconds */
void sthread_preemption_init(sthread_ctx_start_func_t func, int period);

/* Turns interrupts ON and off
* Returns the last state of the inturrupts
* LOW = interrupts ON
* HIGH = interrupts OFF
*/
int splx(int splval);

/*
* atomic_test_and_set - using the native compare and exchange on the
* Intel x86.
*
* Example usage:
*
* lock_t lock;
* while(atomic_test_and_set(&lock)) { } // spin
* _critical section_
* atomic_clear(&lock);
*/

int atomic_test_and_set(lock_t *l);
void atomic_clear(lock_t *l);

2

7

Signals

� Asynchronous notification mechanism

� Every process has a signal handler table

� When a signal is sent to a process, OS interrupts that process
and calls the handler function registered for that signal

� A process can:
� Override the default signal handlers using the signal() system call (or

sigaction())

� Enable / disable signals via sigaddset() / sigdelset()

� To send a signal, use kill(N), where N is signal #
� E.g.: SIGINT (CTRL-C), SIGQUIT (CTRL-\), SIGKILL* (kill -9),

SIGSEGV, SIGFPE, SIGALRM, SIGIO, SIGUSR1

* Handler for SIGKILL cannot be replaced by process.

8

What you need to do

� Add a call to sthread_preemption_init() as the
last line in your sthread_user_init() function.

� init specifies a function that is called on each timer
interrupt (done for you, but instructive to look at!)

� This func should cause thread scheduler to switch to a
different thread

� Add synchronization to thread management
routines

� Where are the critical sections from part 1 and 2?

9

Preemption + Critical Sections

� Safest way: disable interrupts before critical sections

� Example:

� Where is the critical section? Why?

/*returns the next thread on the ready queue*/
sthread_t sthread_user_next() {
sthread_t next;

next = sthread_dequeue(ready_q);
if (next == NULL)

exit(0);
return next;

}

sthread_t sthread_user_next() {
sthread_t next;

int old = splx(HIGH);
next = sthread_dequeue(ready_q);

splx(old);
if (next == NULL)
exit(0);

return next;
}

NON-threadsafe soln threadsafe soln

10

Part 6 – Report

� Design discussion & functionality
� Make it short

� Results
� Run a few experiments with the new
webserver

� Use given web benchmark:
/cse451/projects/webclient

� Present results in a graphical easy-to-
understand form.

� Explain
� Are the results what you expected?

� Try to justify any discrepancies you see

11

Project 2 questions?

12

Midterm

� Review lecture tomorrow

Top topics:

� Processes

� Scheduling

� Synchronization

� Virtual memory

3

13

Scheduling review

� FIFO:
+ simple
- short jobs can get stuck behind long ones; poor I/O device

utilization

� RR:
+ better for short jobs

- hard to select right time slice

- poor turnaround time when jobs are the same length

� SJF:
+ minimal average waiting time

- hard to predict the next CPU burst length
- unfair

� Multi-level feedback:
+ approximate SJF (gives preference to short jobs)

+ establishes the nature of a process quickly
- unfair to long running jobs

14

A simple scheduling problem

Burst TimeArrival TimeThread

23C

51B

100A

� FIFO Turnaround time: � FIFO Waiting Time:

15

A simple scheduling problem

Burst TimeArrival TimeThread

23C

51B

100A

� FIFO Turnaround Time:

� A: (10-0) = 10

� B: (15-1) = 14

� C: (17-3) = 14

� (10+14+14)/3 = 12.66

� FIFO Waiting Time:

� A: 0

� B: (10-1) = 9

� C: (15-3) = 12

� (0+9+12)/3 = 7

16

A simple scheduling problem

Burst TimeArrival TimeThread

23C

51B

100A

� Ave Turnaround Time:
� B: 8-1 = 7

� C: 5-3 = 2

� A: 17-0 = 17

� (17+2+7)/3 = 8.67

� Ave Waiting Time:
� B: 2

� C: 0

� A: 2+2+3 = 7

� (2+0+7)/3 = 3

� What about SJF?

A B B A

A B C

C

1 3 5 8 17

17

Priority Inversion

� Have three processes
� P1:Highest priority; P2:Medium; P3:Lowest
� P1 and P3 have this code:

P(mutex);

critical section;

V(mutex);

� P2 is a long-running task

� P3 acquires mutex; preempted
� P1 tries to acquire mutex; blocks
� P2 enters the system at medium priority; runs
� P3 never gets to run; P1 never gets to run!!

� This happened on Mars Pathfinder in 1997!
� Solutions?

18

Deadlock-related questions

� Q1: Can there be a deadlock with only process?

� Q2: Given two threads, what sequence of calls to
transfer(...) causes the following to deadlock?

/* transfer x dollars from a to b */

void transfer(account *a, account *b, int x)

P(a->sema);

P(b->sema);

a->balance += x;

b->balance -= x;

V(b->sema);

V(a->sema);

