
1

1

CSE451 – Section 7

Project 2 hints
VM (process memory, buffer 
overrun attacks)

2

Webserver w/user threads

� Problems with synchronous I/O and user 
threads:

� Accept() blocks the main thread

� Hint: yield() in main thread after handing off 
the socket id

� Use pthreads for Web server-related parts 
(parts 4 and 6)

� We won’t test sioux with user threads

3

Relevant Issues from Project 1

� Methodology for the simple benchmark:

� Give details about your experimental setting:

� E.g., used P4 3GHz, averaged over 1M trials of 
running a system call

4

Project 2 – questions?

5

Virtual Memory (quick recap)

Process’ VM:

Another 
process

(Inspired from wikipedia)

Disk

Physical memory

6

Virtual Memory (quick recap)

Process’ VM:

Another 
process

Disk

Physical memory

page frame #

Process’

Page table



2

7

Virtual Memory (quick recap)

Process’ VM:

Another 
process

Disk

Physical memory

page frame #

Process’

page table

� How can we use paging to set up sharing of 
memory between two processes? 8

Process Memory Organization

� In figure, stack grows downwards, but it’s not necessary

� How can you determine the direction in which stack grows?

TEXT

DATA

STACK
0xffffffff

0x00000000

Program stack

Initialized/uninitialized
global/static variables

static int a = 3;

Heap
char* buff = (char*)malloc(…)

What goes here?

Code

9

Example

� What does the process’ memory look like for the 

following code:

void foo(int a, int b, int c) {

char buffer1[5];

char buffer2[10];

}

void main() {

foo(1,2,3);

}

Program 
stack

Global variables

Heap

Code

We’re here w/ execution

Example taken from “Smashing The Stack For Fun And Profit ” 10

Contents of the stack

Word size 
(4B)

c
b
a

Bottom of stack 
(0xffffffff)

1 word

1 word

1 word

RET
Saved return address 
(Where does it point 
to?)Memory is 

addressed in 

multiples of 
words

SFP

buffer1

buffer2
How many words?

11

How would you smash the stack?

Word size 
(4B)

c
b
a

Bottom of stack 
(0xffffffff)

1 word

1 word

1 word

RET
SFP

buffer1

buffer2

1 word

1 word

2 words

3 words

12

Buffer overflows

� What’s the bug?

void foo(char* str) {

char buffer[5];

strcpy(buffer, str);

}

void main() {

char large_string[256];

…

foo(large_string);

}

Example taken from “Smashing The Stack For Fun And Profit ”



3

13

The stack contents

*str

SFP
RET

buffer

void foo(char* str) {

char buffer[5];

strcpy(buffer, str);

}

void main(int argc,

char* argv[]) 

{

…

foo(argv[1]);

}
Large 

addr

Small 

addr

14

The stack contents

*str

SFP
RET

buffer

void foo(char* str) {

char buffer[5];

strcpy(buffer, str);

}

void main(int argc,

char* argv[]) {

foo(argv[1]);

}

• What cmd-line argument 

should attacker provide?

- Length?
- Contents?

Large 

addr

Small 

addr

15

Shell code

� Program to bring up a shell:
#include <stdio.h>

void main() {

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

}

� If you de-assemble, you get:
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd” 

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

16

More information

� Smashing The Stack For Fun And Profit, Aleph 
One:

http://www.cs.washington.edu/education/cour
ses/cse599g/CurrentQtr/stack.txt


