* CSE451 — Section 7

Project 2 hints
VM (process memory, buffer
overrun attacks)

i Webserver w/user threads

= Problems with synchronous I/O and user
threads:
= Accept() blocks the main thread
= Hint: yield() in main thread after handing off
the socket id
= Use pthreads for Web server-related parts
(parts 4 and 6)

= We wonttest sioux with user threads

* Relevant Issues from Project 1

= Methodology for the simple benchmark:
= Give details about your experimental setting:

= E.g., used P4 3GHz, averaged over 1M trials of
running a system call

* Project 2 — questions?

i Virtual Memory (quick recap)

Process’ VM: Physical memory

(Inspired from wikipedia) s

Virtual Memory (quick recap)

Process’

Physical memo
Page table 4 Y

Process’ VM:

\

page frame #

" Disk

Virtual Memory (quick recap)

Process’ .
Process’ VM: page table Physical memory
page frame #

<

= How can we use paging to set up sharing of

memory between two processes? 5

i Process Memory Organization

0x00000000

TEXT Code

Initialized/uninitialized |——static int a = 3;
global/static variables

DATA Heap

STACK programstack | What goes here?
OXfrffffef

|—— char* buff = (char*)malloc(...)

= In figure, stack grows downwards, but it's not necessary
= How can you determine the direction in which stack grows?s

* Example

= What does the process’ memory look like for the
following code:

void foo(int a, int b, int c) {
char bufferl[5];

char buffer2[10]; We're here w/ execution

}

void main() {
Code

foo (1 ’ 2 ’ 3) ; Global variables

H

} —r

—t—
Program
stack
Example taken from “Smashing The Stack For Fun And Profit ” 9

i Contents of the stack

| buffer2
How many words?
bufferl
SFP Saved return address
RET (Where does it point
Memory is 1 word a to?)
addressed in b
multiples of 1 word
words 1 word C
Bottom of stack
Word size (OXFfffr) "
(4B)

i How would you smash the stack?

3 words bUfferZ

2 words bufferl

1 word SFP
1 word RET
1 word a

1 word b

1 word C

Bottom of stack
Wordsize__, (Ox)
(4B)

i Buffer overflows

= What'’s the bug?

void foo (char* str) {
char buffer[5];
strcpy (buffer, str);
}

void main() {

char large_string[256];

foo (large_string);

}

Example taken from “Smashing The Stack For Fun And Profit ” 12

i The stack contents

void foo(char* str) {
char buffer[5];
strcpy (buffer, str);
}

void main (int argc,

buffer

char* argvl[])
{

SFP

RET

foo(argv[1l]);

*str

Small
addr

Large
addr

i Shell code

= Program to bring up a shell:
#include <stdio.h>
void main() {

char *name[2];

name[0] = "/bin/sh";

name[l] = NULL;

execve (name[0], name, NULL);

}
= If you de-assemble, you get:

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd”

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

i The stack contents
Small

void foo(char* str) { addr
char buffer[5];
strcpy (buffer, str);
}

void main(int argc,

char* argv[]) { buffer

) foo (argv[l]); SEp

« What cmd-line argument EET

should attacker provide? str
- Length? Large
- Contents? 14

i More information

= Smashing The Stack For Fun And Profit, Aleph
One:

http://www.cs.washington.edu/education/cour
ses/cse599g/CurrentQtr/stack.txt

