
1

1

Section 9:

Project 3 – The Buffer Cache

Network File Systems

2

Questions?

3

Linux FS Layers (Revisit)

Disk drivers

Buffer cache

User apps

VFS

ext2 ext3 NFScse451fs

Blocks

Inodes, direntries

Files, directories

Network 4

Linux Buffer Manager

• Buffer cache caches disk blocks & buffers writes
• When you write to a file, the data goes into buffer cache

(for write-back buffer caches)

• Sync is required to flush the data to disk
• Update and bdflush processes flush data to disk (every 30s)

• Linux buffer cache code fundamentals:
• Blocks are represented by buffer_heads

• Actual data is in buffer_head->b_data

• For a given disk block, buffer manager could be:

• Completely unaware of it

• no buffer_head exists, block not in memory

• Aware of block information

• buffer_head exists, but block data (b_data) not in memory

• Aware of block information and data

• Both the buffer_head and its b_data are valid (“$ hit”)

5

Accessing blocks

• To read a block, FS uses sb_bread(…):

• Find the corresponding buffer_head
• Create if doesn’t exist

• Make sure buffer_head->b_data is in memory
(read from disk if necessary)

• To write a block:

• mark_buffer_dirty() + brelse() - mark buffer as changed
and release to kernel (which does the writing)

6

Some buffer manager functions

Mark the buffer modified, meaning needs to be
written to disk at some point.

mark_buffer_dirty(bh)

Indicate that the data pointed to by bh is valid. mark_buffer_uptodate(bh)

Get the buffer_head for the given disk block.

Does not guarantee anything about the state
of the actual data. Increments ref count;

always pair with a brelse. Zeros out new
blocks (required for security).

cse451_getblk(pbh, inode,

block, create)

Decrement the ref. count of the given buffer.brelse(bh)

Get the buffer_head for the given disk block,

ensuring that the data is in memory and ready
for use. Increments ref count; always pair with

a brelse.

cse451_bread(pbh, inode,

block, create)

[Remember this lock-release pattern for future use in multi-threaded (multi-process)
programs; it’s how reference-counted pointers also work.]

2

7

Network File Systems

• Provide access to remote files over a network
• Typically aim for location and network transparency

• Designed and optimized for different types of
operations
• E.g., work over LANs, over WANs, support disconnected

operations, fault-tolerance, scalability, consistency, etc.

Examples:

• Network File System (NFS) – Sun Microsystems

• Server Message Block (SMB) – originally IBM,
Microsoft

• Andrew File System (AFS) – CMU

• Coda – CMU

8

NFS

• A server exports (or shares) a directory

• A client mounts the remote directory onto his local
FS namespace
• The mounted directory looks like an integral subtree of

the local file system, replacing the subtree descending
from the local directory [1]

• However, it’s all namespace magic, nothing is actually
stored on local disks

[1] http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

9

Mounting an NFS Export

• A remote exported directory can be “glued” onto
the local hierarchy

Figure taken from http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

Exported

directories

10

Mounting NFS Directories

Figure taken from http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

Mount Cascading mount

11

The NFS Protocol

• NFS is designed to operate in a heterogeneous environment
of different machines, operating systems, and network
architectures

• NFS specifications are independent of these media

• This independence is achieved through the use of RPC and
XDR (eXternal Data Representation)

• Nearly one-to-one correspondence between regular UNIX file
system calls and the NFS protocol RPCs

• looking up a file within a directory

• reading a set of directory entries

• accessing file attributes

• reading and writing files

Bullets taken from presentation at http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt
12

The NFS Architecture

Figure taken from http://www.csie.fju.edu.tw/~yeh/courses/spring08/os/ch11.ppt

3

13

Example: Setting up an NFS Share

• Server exports directory
• Check nfsd is running and it if not

(e.g., service nfsd start)
• Edit /etc/exports file

• /usr/shared 192.168.0.0/255.255.255.0(rw)

• man exports for more detailed structure of file

• Force nfsd to re-read /etc/exports using exportfs –ra

• Client mounts the remote directory locally
• mount –t nfs 192.168.0.1:/usr/share /usr/local

(192.168.0.1 is the server’s IP address)

• can enable automatic mounting by editing /etc/fstab (man
fstab)

Note:
• The above is just a “by-hand” example; use the Internet for more precise tutorials and

troubleshooting

