
1

CSE 451: Operating Systems
Autumn 2009

Module 12
Page Table Management, TLBs,

and Other Pragmatics

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 2

Address translation and page faults
(refresher!)

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

What mechanism
causes a page fault

to occur?

Recall how address
translation works

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 3

How does OS handle a page fault?

• Interrupt causes system to be entered
• System saves state of running process, then vectors to

page fault handler routine
– find or create (through eviction) a page frame into which to load

the needed page (1)
• if I/O is required, run some other process while it’s going on

– find the needed page on disk and bring it into the page frame (2)
• run some other process while the I/O is going on

– fix up the page table entry
• mark it as “valid,” set “referenced” and “modified” bits to false, set

protection bits appropriately, point to correct page frame
– put the process on the ready queue

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 4

• (2) Find the needed page on disk and bring it into the
page frame
– processor makes process ID and faulting virtual address

available to page fault handler
– process ID gets you to the base of the page table
– VPN portion of VA gets you to the PTE
– data structure analogous to page table (an array with an

entry for each page in the address space) contains disk
address of page

– at this point, it’s just a simple matter of I/O
• must be positive that the target page frame remains available!

– or what?

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 5

• (1) Find or create (through eviction) a page frame into
which to load the needed page
– run page replacement algorithm

• free page frame
• assigned but unmodified (“clean”) page frame
• assigned and modified (“dirty”) page frame

– assigned but “clean”
• find PTE (may be a different process!)
• mark as invalid (disk address must be available for subsequent

reload)
– assigned and “dirty”

• find PTE (may be a different process!)
• mark as invalid
• write it out

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 6

“Issues”

• Memory reference overhead of address translation
– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table

lookups
• translation lookaside buffer (TLB)

• Memory required to hold page tables can be huge
– need one PTE per page in the virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– 48 bit AS, same assumptions, 64GB per page table!
– solution: page the page tables, and use multi-level page

tables!
• (ow, my brain hurts …)

2

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 7

Paging the page tables 1

• Simplest notion:
– put user page tables in a pageable segment of the system’s

address space
– wire down the system’s page table(s) in physical memory
– allow the system segment containing the user page tables to

be paged
• a reference to a non-resident portion of a user page table is a

page fault in the system address space
• the system’s page table is wired down

– “no smoke and mirrors”

• As a practical matter, this simple notion doesn’t cut
the mustard today
– although it is exactly what VAX/VMS did!

• But it’s a useful model for what’s actually done
11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 8

Paging the page tables 2

• How can we reduce the physical memory
requirements of page tables?
– observation: only need to map the portion of the address

space that is actually being used (often a tiny fraction of the
total address space)

• a process may not use its full 32/48/64-bit address space
• a process may have unused “holes” in its address space
• a process may not reference some parts of its address space

for extended periods
– all problems in CS can be solved with a level of indirection!

• two-level (three-level, four-level) page tables

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 9

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset and PFN yield physical address

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 10

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 11

• Example:
– 32-bit address space, 4KB pages, 4 bytes/PTE

• how many bits in offset?
– need 12 bits for 4KB (212=4K), so offset is 12 bits

• want master PT to fit in one page
– 4KB/4 bytes = 1024 PTEs
– thus master page # is 10 bits (210=1K)
– and there are 1024 secondary page tables

• and 10 bits are left (32-12-10) for indexing each secondary
page table

– hence, each secondary page table has 1024 PTEs and fits in one
page

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 12

Generalizing

• Early architectures used 1-level page tables
• VAX, P-II used 2-level page tables
• SPARC uses 3-level page tables
• 68030 uses 4-level page tables
• Key thing is that the outer level must be wired down

(pinned in physical memory) in order to break the
recursion – no smoke and mirrors

3

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 13

Alternatives

• Hashed page table (great for sparse address spaces)
– VPN is used as a hash
– collisions are resolved because the elements in the linked

list at the hash index include the VPN as well as the PFN

• Inverted page table (really reduces space!)
– one entry per page frame
– includes process id, VPN
– hell to search! (but IBM PC/RT actually did this!)

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 14

Making it all efficient

• Original page table scheme doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware
• called a translation lookaside buffer (TLB)
• TLB is managed by the memory management unit (MMU)

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 15

TLBs

• Translation lookaside buffer
– translates virtual page #s into PTEs (page frame numbers)

(not physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs (page frame numbers)
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical (64-192KB)
• can hold the “hot set” or “working set” of a process

– hit rates in the TLB are therefore really important

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 16

Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, translation is placed into the TLB

• Hardware (memory management unit (MMU))
– knows where page tables are in memory

• OS maintains them, HW access them directly
– tables have to be in HW-defined format
– this is how x86 works

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 17

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly
– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g., LRU)

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 18

Cool Paging Tricks

• Exploit level of indirection between VA and PA
– shared memory

• regions of two separate processes’ address spaces map to the
same physical frames

– read/write: access to share data
– execute: shared libraries!

• will have separate PTEs per process, so can give different
processes different access privileges

• must the shared region map to the same VA in each process?
– copy-on-write (COW), e.g., on fork()

• instead of copying all pages, created shared mappings of
parent pages in child address space

– make shared mappings read-only in child space
– when child does a write, a protection fault occurs, OS takes over

and can then copy the page and resume client

4

11/1/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 19

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file
• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

11/1/2009 © 2006 Gribble, Lazowska, Levy 20

Summary

• We know how address translation works in the
“vanilla” case (single-level page table, no fault, no
TLB)
– hardware splits the virtual address into the virtual page

number and the offset; uses the VPN to index the page
table; concatenates the offset to the page frame number
(which is in the PTE) to obtain the physical address

• We know how the OS handles a page fault
– find or create (through eviction) a page frame into which to

load the needed page
– find the needed page on disk and bring it into the page frame
– fix up the page table entry
– put the process on the ready queue

11/1/2009 © 2006 Gribble, Lazowska, Levy 21

• We’re aware of two “gotchas” that complicate things
in practice
– the memory reference overhead of address translation

• the need to reference the page table doubles the memory traffic
• solution: use a hardware cache (TLB = translation lookaside

buffer) to absorb page table lookups
– the memory required to hold page tables can be huge

• solution: use multi-level page tables; can page the lower levels,
or at least omit them if the address space is sparse

– this makes the TLB even more important, because without it, a
single user-level memory reference can cause two or three or four
page table memory references … and we can’t even afford one!

11/1/2009 © 2006 Gribble, Lazowska, Levy 22

• TLB details
– Implemented in hardware

• fully associative cache (all entries searched in parallel)
• cache tags are virtual page numbers
• cache values are page table entries (page frame numbers)
• with PTE + offset, MMU can directly calculate the physical

address
– Can be small because of locality

• 16-48 entries can yield a 99% hit ratio
– Searched before the hardware walks the page table(s)

• hit: address translation does not require an extra memory
reference (or two or three or four) – “free”

• miss: the hardware walks the page table(s) to translate the
address; this translation is put into the TLB, evicting some other
translation; typically managed LRU by the hardware

11/1/2009 © 2006 Gribble, Lazowska, Levy 23

– On context switch
• TLB must be purged/flushed (using a special hardware

instruction) unless entries are tagged with a process ID
– otherwise, the new process will use the old process’s TLB entries

and reference its page frames!

• Cool tricks
– shared memory
– copy-on-write
– memory-mapped files

