
1

CSE 451: Operating Systems
Autumn 2009

Module 17
Berkeley Log-Structured File System

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 2

More on caching (applies both to FS and FFS)

• Cache (often called buffer cache) is just part of 
system memory

• It’s system-wide, shared by all processes
• Need a replacement algorithm

– LRU usually

• Even a small (4MB) cache can be very effective
• Today’s huge memories => bigger caches => even 

higher hit ratios
• Many file systems “read-ahead” into the cache, 

increasing effectiveness even further

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 3

Caching writes, vs. reads

• Some applications assume data is on disk after a 
write (seems fair enough!)

• And the file system itself will have (potentially costly!) 
consistency problems if a crash occurs between 
syncs – i-nodes and file blocks can get out of whack

• Approaches:
– “write-through” the buffer cache (synchronous – slow), or
– “write-behind”: maintain queue of uncommitted blocks, 

periodically flush (unreliable – this is the sync solution), or
– NVRAM: write into battery-backed RAM (expensive) and 

then later to disk

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 4

So, you can make things better, but …

• As caches get big, most reads will be satisfied from 
the cache

• No matter how you cache write operations, though, 
they are eventually going to have to get back to disk

• Thus, most disk traffic will be write traffic
• If you eventually put blocks (i-nodes, file content 

blocks) back where they came from on the disk, then 
even if you schedule disk writes cleverly, there’s still 
going to be a lot of head movement (which dominates 
disk performance) – so you simply won’t be utilizing 
the disk effectively

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 5

LFS inspiration

• Suppose, instead, what you wrote to disk was a log of 
changes made to files
– log includes modified data blocks and modified metadata 

blocks
– buffer a huge block (“segment”) in memory – 512K or 1M
– when full, write it to disk in one efficient contiguous transfer

• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk contains a single big long log of changes, 
consisting of threaded segments

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 6

LFS basic approach

• Use the disk as a log
• A log is a data structure that is written only at one 

end
• If the disk were managed as a log, there would be 

effectively no seeks
• The “file” is always added to sequentially
• New data and metadata (i-nodes, directories) are 

accumulated in the buffer cache, then written all at 
once in large blocks (e.g., segments of .5M or 1M)

• This would greatly increase disk write throughput
• Sounds simple – but really complicated under the 

covers



2

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 7

LFS vs. UNIX File System or FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

i-node map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 811/15/2009 8

LFS Challenges

• There are two main challenges with LFS:
– 1. locating data written in the log

• FFS places files in a well-known location, LFS writes data “at 
the end of the log”

– 2. managing free space on the disk
• disk is finite, and therefore log must be finite
• cannot always append to log!

– need to recover deleted blocks in old part of log
– need to fill holes created by recovered blocks

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 911/15/2009 9

LFS: locating data

• FFS uses i-nodes to locate data blocks
– i-nodes pre-allocated in each cylinder group
– directories contain locations of i-nodes

• LFS appends i-nodes to end of log, just like data
– makes them hard to find

• Solution:
– use another level of indirection: i-node maps
– i-node maps map i-node #s to i-node location
– so how do you find the i-node map?

• after all, changes to it must be appended to the log
• location of i-node map blocks are kept in a checkpoint region
• checkpoint region has a fixed location

– cache i-node maps in memory for performance

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 1011/15/2009 10

LFS: free space management

• LFS: append-only quickly eats up all disk space
– need to recover deleted blocks

• Solution:
– fragment log into segments
– thread segments on disk

• segments can be anywhere
– reclaim space by cleaning segments

• read segment
• copy live data to end of log
• now have free segment you can reuse!

– cleaning is a big problem
• costly overhead, when do you do it?

– “idleness is not sloth”

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 11

LFS summary

• As caches get big, most reads will be satisfied from 
the cache

• No matter how you cache write operations, though, 
they are eventually going to have to get back to disk

• Thus, most disk traffic will be write traffic
• If you eventually put blocks (i-nodes, file content 

blocks) back where they came from, then even if you 
schedule disk writes cleverly, there’s still going to be 
a lot of head movement (which dominates disk 
performance)

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 12

• Suppose, instead, what you wrote to disk was a log of 
changes made to files
– log includes modified data blocks and modified metadata 

blocks
– buffer a huge block (“segment”) in memory – 512K or 1M
– when full, write it to disk in one efficient contiguous transfer

• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk is just one big long log, consisting of 
threaded segments



3

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 13

• What happens when a crash occurs?
– you lose some work
– but the log that’s on disk represents a consistent view of the 

file system at some instant in time

• Suppose you have to read a file?
– once you find its current i-node, you’re fine
– i-node maps provide a level of indirection that makes this 

possible
• details aren’t that important

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 14

• How do you prevent overflowing the disk (because 
the log just keeps on growing)?
– segment cleaner coalesces the active blocks from multiple 

old log segments into a new log segment, freeing the old log 
segments for re-use

• Again, the details aren’t that important

11/15/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 15

Tradeoffs

• LFS wins, relative to FFS
– metadata-heavy workloads

• small file writes
• deletes

(metadata requires an additional write, and FFS does this 
synchronously)

• LFS loses, relative to FFS
– many files are partially over-written in random order

• file gets splayed throughout the log

• LFS vs. JFS
– JFS is “robust” like LFS, but data must eventually be written 

back “where it came from” so disk bandwidth is still an issue


