
1

CSE 451: Operating Systems
Autumn 2009

Module 21
Remote Procedure Call (RPC)

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 211/29/2009 2

What’s Interesting about RPC?

• RPC = Remote Procedure Call
– the most common means for remote communication
– used both by operating systems and applications

• NFS is implemented as a set of RPCs
• HTTP is essentially RPC
• DCOM, CORBA, Java RMI, etc., are just RPC systems

• Someday you, too, will likely have to write an
application that uses remote communications
– you’ll likely model your remote communications on RPC

• RPC is really, really simple under the covers

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 3

Client/Server communication

• The prevalent model for structuring distributed computation is
the client/server paradigm
– a server is a program (or collection of programs) that provides a

service to other programs
• e.g., file server, name server, web server, mail server …
• server/service may span multiple nodes (clusters)

– often, nodes are called servers too
– e,g., the web server runs on a Dell server computer

– a client is a program that uses the service
• the client first binds to the server

– locates it, establishes a network connection to it
• the client then sends requests (with data) to perform actions, and the

server sends responses (with data)
– e.g., web browser sends a “GET” request, server responds with a web page

• TCP/IP is the transport, but what is the higher-level
programming model?

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 4

Messages

• Initially, people hand-coded messages to send
requests and responses
– message is a stream of bytes – “op codes” and operands

• Lots of drawbacks
– need to worry about message format
– have to pack and unpack data from messages
– servers have to decode messages and dispatch to handlers
– messages are often asynchronous

• after sending one, what do you do until response comes back?
– messages aren’t a natural programming model

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 5

Procedure calls

• Procedure calls are a natural way to structure
multiple modules inside a single program
– every language supports procedure calls
– semantics are well-defined and well-understood
– programmers are used to them

• “Server” (called procedure) exports an API
– think about a file system / file server API: open, close, read,

write, synch, etc.

• “Client” (calling procedure) calls the server
procedure’s API

• Linker binds the two together

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 6

Procedure call example

• If the server were just a library, then “Add” would just
be a local procedure call

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
return x + y;

}

Server API:

int Add(int x, int y;

2

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 7

Remote Procedure Call

• Use procedure calls as the model for distributed
(remote) communication
– traditional procedure call syntax and semantics
– have servers export a set of procedures that can be called

by client programs
• similar to library API, class definitions, etc.

– clients do a local procedure call, as though they were directly
linked with the server

• under the covers, the procedure call is converted into a
message exchange with the server

• largely invisible to the programmer!

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 8

• There are a bunch of hard issues:
– how do we make the “remote” part of RPC invisible to the

programmer?
• and is that a good idea?

– what are the semantics of parameter passing?
• what if we try to pass by reference?

– how do we bind (locate/connect-to) servers?
– how do we handle heterogeneity?

• OS, language, architecture, …
– how do we make it go fast?

RPC issues

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 9

RPC model

• A server defines the service interface using an
interface definition language (IDL)
– the IDL specifies the names, parameters, and types for all

client-callable server procedures
• example: ASN.1 in the OSI reference model
• example: Sun’s XDR (external data representation)

• A “stub compiler” reads the IDL declarations and
produces two stub procedures for each server
procedure
– the server programmer implements the service’s procedures

and links them with the server-side stubs
– the client programmer implements the client program and

links it with the client-side stubs
– the stubs manage all of the details of remote communication

between client and server using the RPC runtime system

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 10

RPC stubs

• A client-side stub is a procedure that looks to the client as if it
were a callable server procedure
– it has the same API as the server’s implementation of the

procedure
– a client-side stub is just called a “stub” in Java RMI

• A server-side stub looks like a caller to the server
– it looks like a hunk of code that invokes the server procedure
– a server-side stub is called a “skeleton” or “skel” in Java RMI

• The client program thinks it’s invoking the server
– but it’s calling into the client-side stub

• The server program thinks it’s called by the client
– but it’s really called by the server-side stub

• The stubs send messages to each other, via the runtime, to
make the RPC happen transparently

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 11

PC

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
return x + y;

}

Server API:

int Add(int x, int y;

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 12

RPC

Client Program:

…
sum = server->Add(3,4);
…

Server Program:

int Add(int x, int y) {
return x + y;

}

client-side stub:

int Add(int x, int y) {
alloc message buffer;
mark as “add” call;
store x,y in buffer;
send message;
receive response;
unpack response;
return response;

}

RPC runtime system:

send message to server;
receive response;

server-side stub:

Message Add_Stub(Message m) {
remove x,y from m;
r = Add(x,y);
allocate response buffer;
store r in response;
return response;

}

RPC runtime system:

receive message m;
response = Add_Stub(m);
send response to client;

Topics:
• interface

description
• stubs
• stub

generation
• parameter

marshalling
• binding
• runtime system
• error handling
• performance
• thread pools

3

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 13

RPC marshalling

• Marshalling is the packing of procedure parameters
into a message packet
– the RPC stubs call type-specific procedures to marshal or

unmarshal the parameters of an RPC
• the client stub marshals the parameters into a message
• the server stub unmarshals the parameters and uses them to

invoke the service’s procedure
– on return:

• the server stub marshals the return value
• the client stub unmarshals the return value, and returns them to

the client program

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 14

RPC binding

• Binding is the process of connecting the client to the
server
– the server, when it starts up, exports its interface

• identifies itself to a network name server
• tells RPC runtime that it is alive and ready to accept calls

– the client, before issuing any calls, imports the server
• RPC runtime uses the name server to find the location of the

server and establish a connection

• The import and export operations are explicit in the
server and client programs
– a slight breakdown in transparency

• more to come…

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 15

RPC transparency

• One goal of RPC is to be as transparent as possible
– make remote procedure calls look like local procedure calls
– we’ve seen that binding breaks this transparency

• What else breaks transparency?
– failures: remote nodes/networks can fail in more ways than

with local procedure calls
• network partition, server crash
• need extra support to handle failures
• server can fail independently from client

– “partial failure”: a big issue in distributed systems
– if an RPC fails, was it invoked on the server?

– performance: remote communication is inherently slower
than local communication

• if you’re not aware you’re doing a remote procedure call, your
program might slow down an awful lot…

11/29/2009 © 2009 Gribble, Lazowska, Levy, Zahorjan 16

RPC and thread pools

• What happens if two client threads (or client
programs) simultaneously invoke the same server
procedure using RPC?
– ideally, two separate threads will run on the server
– so, the RPC run-time system on the server needs to spawn

or dispatch threads into server-side stubs when messages
arrive

• is there a limit on the number of threads?
• if so, does this change semantics?
• if not, what if 1,000,000 clients simultaneously RPC into the

same server?

