
1

CSE 451: Operating Systems
Autumn 2009

Module 25
Authentication / Authorization / Security

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 2

Terminology I: the entities

• Principals – who is acting?
– User / Process Creator
– Code Author

• Objects – what is that principal acting on?
– File
– Network connection

• Rights – what actions might you take?
– Read
– Write

• Familiar UNIX file system example:
– owner / group / world
– read / write / execute

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 3

Terminology II: the activities

• Authentication – who are you?
– identifying principals (users / programs)

• Authorization – what are you allowed to do?
– determining what access users and programs have to specific

objects

• Auditing – what happened
– record what users and programs are doing for later analysis /

prosecution

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 4

Authentication

• How does the provider of a secure service know who
it’s talking with?
– Example: login

• We’ll start with the local case (the keyboard is
attached to the machine you want to login to)

• Then we’ll look briefly at a distributed system

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 5

Local Login

(“Local” ⇒ this connection is assumed secure)

How does the OS know that I’m ‘emmert’?

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 6

Shared Secret

My dog
has fleas

Emmert:
My dog has

fleas

The shared secret is typically a password, but it could be something else:
• Retina scan
• A key

2

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 7

Simple Enough

• This seems pretty trivial

• Like pretty much all aspects of security, there are
perhaps unexpected complications

• As an introduction to this, let’s look at briefly at the
history of password use

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 8

• CTSS (1962): password file {user name, user
identifier, password}

If a bad guy gets hold of the password file, you’re in
deep trouble

– Any flaw in the system that compromises the password file
compromises all accounts!

Storing passwords

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “!ofotc2n”

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 9

Two Choices

1. Make sure there are no flaws in the system (ha!)
2. Render knowledge of the password file useless

Unix (1974): store encrypted forms of the passwords

My dog
has fleas

Emmert:
2zppQ01c

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 10

Aside on Encryption

• Encryption: takes a key and plaintext and creates ciphertext: Ek1(M) = C
• Decryption: takes ciphertext and a key and recovers plaintext: Dk2(C) = M

• Symmetric algorithms (aka secret-key aka shared secret algorithms):
– k1 = k2 (or can get k2 from k1)

• Public-Key Algorithms
– decryption key (k2) cannot be calculated from encryption key (k1)
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

• Computational requirements:
– Deducing M from Ek(M) is “really hard”
– Computing Ek(M) and Dk(C) is efficient

encryption decryptionplaintext (M) ciphertext (C) M

encryption key (k1) decryption key (k2)

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 11

• Encrypt passwords with passwords

• David’s password, “allison,” is encrypted using itself
as the key and stored in that form.

• Password supplied by user is encrypted with itself as
key, and result compared to stored result.

• “No problem if someone steals the file”
• Also no need to secure a key

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[allison]allison

Unix Password File

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 12

The Dictionary Attack

• Encrypt many (all) possible password strings offline, and store
results in a dictionary
– I may not be able to invert any particular password, but the odds

are very high I can invert one or more

• 26 letters used, 7 letters long
– 8 billion passwords (33 bits)
– Generating 100,000/second requires 22 hours

• But most people’s passwords are not random sequences of
letters!
– girlfriend’s/boyfriend’s/spouse’s/dog’s name/words in the dictionary

• Dictionary attacks have traditionally been incredibly easy

3

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 13

Making it harder
• Using symbols and numbers and longer passwords

– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• Require frequent changing of passwords
– guards against loaning it out, writing it down, etc.

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 14

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk
• If you are forced to change your password

periodically, you probably choose an even dumber
one
– “feb04” “mar04” “apr04”

• How do we handle this in CSE?

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 15

• Unix (1979): salted passwords
– The salt is just a random number from a large space

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

Bob: 14: T7Vs1dZEWeRcL: 45
David: 15: K3AJ5ocCM4ZM$: 392
Mary: 16: WX3crwUbmCKLf: 152

K=[alison392]allison392

Countermeasure to the Dictionary Attack:
Salt

Okay, are we done? Problem solved?

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 16

Attack Models

• Besides the problems already mentioned that
obviously remain (people give out their passwords /
write them down / key loggers / …), there may be
other clever attacks that we haven’t thought of

• Attack Model: when reasoning about the security of a
mechanism, we typically need to carefully describe
what kinds of attacks we’re thinking of
– helps us reason about what vulnerabilities still remain

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 17

Example 1: Login spoofers

• Login spoofers are a specialized class of Trojan
horses
– Attacker runs a program that presents a screen identical to

the login screen and walks away from the machine
– Victim types password and gets a message saying

“password incorrect, try again”

• Can be circumvented by requiring an operation that
unprivileged programs cannot perform
– E.g., start login sequence with a key combination user

programs cannot catch, CTRL+ALT+DEL on Windows

• False fronts have been used repeatedly to steal bank
ATM passwords!

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 18

Example 2: Page faults as a signal

• VMS (early 80’s) password checking flaw

– password checking algorithm:
for (I=0; I<password.length(); I++) {

if password[I] == supplied_password[I]
return false;

}

return true;

– can you see the problem?
• hint: think about virtual memory…
• another hint: think about page faults…
• final hint: who controls where in memory supplied_password

lives?

4

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 19

So imagine life in the distributed world!

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 20

Issues

• How do I know that I’m talking to the server I intend
(vs. a “man in the middle”)?

• How does the server know it’s talking to me?
• How do we ensure that others can’t eavesdrop on our

conversation?
• How do we ensure that others can’t manipulate our

conversation?
• How do we avoid replay attacks?

12/6/2009 © 2009 Kohno, Lazowska 21

Common Communication Security
Goals

Alice

Privacy of data
Prevent exposure of
information

Integrity of data
Prevent modification of
information

Bob

Adversary

pa
ss

wd =
 fo

ob
ar

; tr
an

sfe
r $

10
0

$1
00

,00
0

12/6/2009 © 2009 Kohno, Lazowska 22

Alice
Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Symmetric Setting

Both communicating parties have access to a
shared random string K, called the key.

12/6/2009 © 2009 Kohno, Lazowska 23

Adversary

pkB
pkA

Alice
Bob

M
Encapsulate Decapsulate

M

pkB skB

pkA,skA pkB,skB

Asymmetric Setting

Each party creates a public key pk and a secret key
sk.

12/6/2009 © 2009 Kohno, Lazowska 24

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary
. Message M

.Ciphertext C

Achieving Privacy (Symmetric)

5

12/6/2009 © 2009 Kohno, Lazowska 25

Achieving Privacy (Asymmetric)

Alice
Bob

M C
Encrypt

pkB

Decrypt

skB

M

Encryption schemes: A tool for protecting privacy.

Adversary
.Message M

.Ciphertext C

pkA,skA pkB,skB

pkB
pkA

12/6/2009 © 2009 Kohno, Lazowska 26

Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes: A tool for protecting
integrity.

(Also called message authentication codes or MACs.)

K K

Adversary
.Message M

. Tag T

12/6/2009 © 2009 Kohno, Lazowska 27

Achieving Integrity (Asymmetric)

M

Alice
Bob

valid/
invalidT

Sign
(M,T)

Verify

Digital signature schemes: A tool for protecting integrity
and authenticity.

Adversary
.Message M

. Tag T

pkA,skA pkB,skB

pkB
pkA

skA pkA

12/6/2009 © 2009 Kohno, Lazowska 28

Alice

PBKDF

Getting keys: PBKDF

Password-based Key Derivation Functions

Password K

12/6/2009 © 2009 Kohno, Lazowska 29

Getting keys: Key exchange

Key exchange protocols: A tool for establishing a
shared symmetric key

Adversary

pkB
pkA

Alice
Bob

K.E.
K

K.E.
K

pkB,skA pkA,skB

pkA,skA pkB,skB

(Why? Public key systems are relatively slow!)

12/6/2009 © 2009 Kohno, Lazowska 30

AdversarypkB, sign(skCA,B,pkB)

Alice
Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Getting keys: CAs
Each party creates a public key pk and a secret key sk.

(Public keys signed by a trusted third party: a certificate
authority.)

pkA, sign(skCA, A, pkA)

6

12/6/2009 © 2009 Kohno, Lazowska 31

One-way Communications

Message encrypted under Bob’s public key

PGP is a good example

But life is never this simple!

12/6/2009 © 2009 Kohno, Lazowska 32

One-way Communications

6. Send D, C, T

(Informal example; ignoring, e.g., signatures)
1. Alice gets Bob’s public key; Alice verifies Bob’s public key (e.g., via CA)

2. Alice generates random symmetric keys K1 and K2

3. Alice encrypts the message M with the key K1; call result C
4. Alice authenticates (MACs) C with key K2; call the result T

5. Alice encrypts K1 and K2 with Bob’s public key; call the result D

(Assume Bob’s private key is encrypted on Bob’s disk.)
7. Bob takes his password to derive key K3
8. Bob decrypts his private key with key K3
9. Bob uses private key to decrypt K1 and K2

10. Bob uses K2 to verify MAC tag T
11. Bob uses K1 to decrypt C

privacy

integrity

Why use K1 to encrypt
M, rather than Bob’s

public key?

12/6/2009 © 2009 Kohno, Lazowska 33

Interactive Communications

Let’s talk securely; here are the algorithms I
understand

I choose these algorithms; start key exchange

Continue key exchange

Communicate using exchanged key

Again, life is never this simple!
12/6/2009 © 2009 Kohno, Lazowska 34

Interactive Communications

1. Alice and Bob exchange public keys and certificates

3. Alice and Bob take their passwords and derive symmetric keys
4. Alice and Bob use those symmetric keys to decrypt and
recover their asymmetric private keys.
5. Alice and Bob use their asymmetric private keys and a key
exchange algorithm to derive a shared symmetric key

6. Alice and Bob use shared symmetric key to encrypt and
authenticate messages

2. Alice and Bob use CA’s public keys to verify certificates and each other’s
public keys

(Informal example; details omitted)

(Will need to rekey regularly; may need to avoid replay attacks, ...)

(Replay attacks: thwart using counters or timestamps …)

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 35 12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 36

Spyware

• Software that is installed that collects information and
reports it to third party
– key logger, adware, browser hijacker, …

• Installed one of two ways
– piggybacked on software you choose to download
– “drive-by” download

• your web browser has vulnerabilities
• web server can exploit by sending you bad web content

• Estimates
– majority (50-90%) of Internet-connected PCs have it
– 1 in 20 executables on the Web have it
– about 0.5% of Web pages attack you with drive-by-

downloads

7

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 37

Additional modern security problems

• Confinement
– How do I run code that I don’t trust?

• e.g., RealPlayer, Flash
– How do I restrict the data it can communicate?
– What if trusted code has bugs?

• e.g., Internet Explorer

• Solutions
– Restricted contexts – let the user divide their identity
– ActiveX – make code writer identify self
– Java – use a virtual machine that intercepts all calls
– Binary rewriting – modify the program to force it to be safe

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 38

ActiveX

• All code comes with a public-key signature
• Code indicates what privileges it needs
• Web browser verifies certificate
• Once verified, code is completely trusted

Code

Signature / Certificate

Permissions

Written by HackerNet
Signed by VerifySign

Let JavaScript call this

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 39

Java / C#

• All problems are solved by a layer of indirection
– All code runs on a virtual machine
– Virtual machine tracks security permissions
– Allows fancier access control models - allows stack walking

• Interposition using language VM doesn’t work for other
languages

• Virtual machines can be used with all languages
– Run virtual machine for hardware
– Inspect stack to determine subject for access checks

12/6/2009 © 2009 Gribble, Lazowska, Levy, Swift, Zahorjan 40

Binary rewriting

• Goal: enforce code safety by embedding checks in
the code

• Solution:
– Compute a mask of accessible addresses
– Replace system calls with calls to special code

Original Code:

lw $a0, 14($s4)
jal ($s5)
move $a0, $v0
jal $printf

Rewritten Code:

and $t6,$s4,0x001fff0
lw $a0, 14($t6)
and $t6,$s5, 0x001fff0
jal ($t6)
move $a0, $v0
jal $sfi_printf

