
1

CSE 451: Operating Systems
Autumn 2010

Module 1
Course Introduction

Ed Lazowska
lazowska@cs.washington.edu

570 Allen Center

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 2

Today’s agenda

• Administrivia
– Course overview

• course staff
• general structure
• the text(s)
• policies
• your to-do list

• OS overview
– Trying to make sense of the topic

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 3

Course overview

• Everything you need to know will be on the course web
page:

http://www.cs.washington.edu/451/

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 4

But to tide you over for the next hour …

• Course staff
– Ed Lazowska
– Pete Hornyack
– Abdul Salama

• General Course Structure
– Read the text prior to class
– Class doesn't aim to repeat the text
– Homework exercises to motivate reading by non-saints
– Sections will focus on projects
– You're paying for interaction

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 5

• The text
– Silberschatz, Galvin & Gagne, Operating System Concepts,

eighth edition
– if using an earlier edition, watch chapter numbering

• Other resources
– Many online; some of them are essential
– Draft sections of a new text also available and extremely

useful

• Policies
– Collaboration vs. cheating
– Projects: late policy

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 6

• Projects
– Project 0: a warmup
– Projects 1-3: significant OS “internals” projects to be done in

teams of 3
– You’re likely to be happier if you form a team on your own than

if we form one for you!

2

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 7

• Your to-do list …
– Please read the entire course web thoroughly, today
– Please get yourself onto the cse451 email list today, and

check your email daily
– Please keep up with the reading
– Homework 1 (reading) is posted on the web now

– Due at the start of class Friday
– Project 0 (“warmup”) is posted on the web now

– Will be discussed in section Thursday
– Due at the end of the day next Friday

– But you need to get started this weekend!

– Begin coming up with a 3-person team for Projects 1-3

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 8

• Course registration
– If you’re going to drop, please do it soon!
– If you want to get into the class, be sure you’ve registered

with the advisors
– They run the show
– I have a registration sheet here!

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 9

More about 451

• This is really two “linked” classes:
– A classroom/textbook part (mainly run by me)
– A project part (mainly run by the TA(s))

• In a perfect world, we would do this as a two-quarter
sequence

• The world isn’t perfect ☺
• By the end of the course, you’ll see how it all fits

together!
– There will be a lot of work
– You’ll learn a lot
– In the end, you’ll understand much more deeply how

computer systems work

• “There is no magic”
9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 10

What is an Operating System?

• Answers:
– I don't know.
– Nobody knows.
– The book claims to know – read Chapter 1.
– They’re programs – big hairy programs

• The Linux source you'll be compiling has over 1.7M lines of C

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 11

What is an Operating System?

• Answers:
– I don't know.
– Nobody knows.
– The book claims to know – read Chapter 1.
– They’re programs – big hairy programs

– The Linux source you'll be compiling has over 1.7M lines of C

Okay. What are some goals of an OS?

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 12

The traditional picture

Applications

OS

Hardware

• “The OS is everything you don’t need to write in order
to run your application”

• This depiction invites you to think of the OS as a
library; we’ll see that
– In some ways, it is:

• all operations on I/O devices require OS calls (syscalls)
– In other ways, it isn't:

• you use the CPU/memory without OS calls
• it intervenes without having been explicitly called

3

9/28/2010 13

DOS

Application

© John DeTreville, Microsoft Corp.

“Everything you don’t have to write”
What is Windows?

9/28/2010 14

DOS Windows

Installer

COM

Printing

TCP/IPBrowser

…File system

……

Application

Application

© John DeTreville, Microsoft Corp.

“Everything you don’t have to write”
What is Windows?

9/28/2010 15

Internet

Application

© John DeTreville, Microsoft Corp.

“Everything you don’t have to write”
What is .NET?

9/28/2010 16

magicmagic

Internet .NET

Device
independence

XML

Identity
& security

AsynchronyExtensibility

……

Application

eBay FedExBank

© John DeTreville, Microsoft Corp.

“Everything you don’t have to write”
What is .NET?

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 17

The OS and hardware

• An OS mediates programs’ access to hardware
resources (sharing and protection)
– computation (CPU)
– volatile storage (memory) and persistent storage (disk, etc.)
– network communications (TCP/IP stacks, Ethernet cards, etc.)
– input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources (ease of use)
– processes (CPU, memory)
– files (disk)
– programs (sequences of instructions)
– sockets (network)

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 18

Why bother with an OS?
• Application benefits

– programming simplicity
• see high-level abstractions (files) instead of low-level hardware

details (device registers)
• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

4

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 19

The major OS issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources

ensured?
• protection: how is one user/program protected from another?
• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with

hardware or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information,

including across a network?

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 20

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

There are tradeoffs, not right and wrong!

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 21

Hardware/Software Changes with Time

• 1960s: mainframe computers (IBM)
• 1970s: minicomputers (DEC)
• 1980s: microprocessors and workstations (SUN),

local-area networking, the Internet
• 1990s: PCs (rise of Microsoft, Intel, Dell), the Web
• 2000s:

– Internet Services / Clusters (Amazon)
– General Cloud Computing (Google, Amazon, Microsoft)
– Mobile/ubiquitous/embedded computing (iPod, iPhone, iPad,

Android)
• 2010s: sensor networks, “data-intensive computing,”

computers and the physical world
• 2020: it’s up to you!!

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 22

Progression of concepts and form factors

© Silberschatz, Galvin and Gagne

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 23

Has it all been discovered?

• New challenges constantly arise
– embedded computing (e.g., iPod)
– sensor networks (very low power, memory, etc.)
– peer-to-peer systems
– ad hoc networking
– scalable server farm design and management (e.g., Google)
– software for utilizing huge clusters (e.g., MapReduce, Bigtable)
– overlay networks (e.g., PlanetLab)
– worm fingerprinting
– finding bugs in system code (e.g., model checking)

• Old problems constantly re-define themselves
– the evolution of smart phones recapitulated the evolution of PCs,

which had recapitulated the evolution of minicomputers, which had
recapitulated the evolution of mainframes

– but the ubiquity of PCs re-defined the issues in protection and
security, as phones are doing once again

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 24

Protection and security as an example

• none
• OS from my program
• your program from my program
• my program from my program
• access by intruding individuals
• access by intruding programs
• denial of service
• distributed denial of service
• spoofing
• spam
• worms
• viruses
• stuff you download and run knowingly (bugs, trojan horses)
• stuff you download and run obliviously (cookies, spyware)

5

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 25

An OS history lesson

• Operating systems are the result of a 60 year long
evolutionary process.
– They were born out of need

• We'll follow a bit of their evolution

• That should help make clear what some of their
functions are, and why

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 26

In the Beginning...

• 1943
– T.J. Watson (created IBM):

“ I think there is a world market for maybe five
computers.”

• Fast forward … 1950
– There are maybe 20 computers in the world
– Why do we care?

• They were unbelievably expensive
• Imagine this: machine time is more valuable than person time!
• Ergo: efficient use of the hardware is paramount

– Operating systems are born
• They carry with them the vestiges of these ancient forces

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 27

The Primordial Computer

CPUDiskosaurus

Memory

Printer

Input Device

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 28

The OS as a linked library

• In the very beginning…
– OS was just a library of code that you linked into your

program; programs were loaded in their entirety into
memory, and executed

• “OS” had an “API” that let you control the disk, control the
printer, etc.

– Interfaces were literally switches and blinking lights
– When you were done running your program, you’d leave and

turn the computer over to the next person

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 29

Asynchronous I/O

• The diskosaurus was really slow
• Add hardware so that the disk could operate without

tying up the CPU
– Disk controller

• Hotshot programmers could now write code that:
– Starts an I/O
– Goes off and does some computing
– Checks if the I/O is done at some later time

• Upside
– Helps increase (expensive) CPU utilization

• Downsides
– It's hard to get right
– The benefits are job specific

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 30

The OS as a “resident monitor”

• Everyone was using the same library of code
• Why not keep it in memory?

• While we’re at it, make it capable of loading Program
4 while running Program 3 and printing the output of
Program 2
– SPOOLing – Simultaneous Peripheral Operations On-Line

• What new requirements does this impose?

6

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 31

IBM 1401

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 32

Multiprogramming

• To further increase system utilization,
multiprogramming OSs were invented
– keeps multiple runnable jobs loaded in memory at once
– overlaps I/O of one job with computing of another

• while one job waits for I/O completion, another job uses the
CPU

– Can get rid of asynchronous I/O within individual jobs
• Life of application programmer becomes simpler; only the OS

programmer needs to deal with asynchronous events
– How do we tell when devices are done?

• Interrupts
• Polling

– What new requirements does this impose?

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 33

IBM System 360

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 34

(An aside on protection)

• Applications/programs/jobs execute directly on the
CPU, but cannot touch anything except “their own
memory” without OS intervention

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 35

(An aside on concurrency)

• CPU architects tell us that individual cores aren't
going to be getting faster (very fast), but that they can
double the number of cores on the old 18 month
cycle (or so)

• The burden is on the programmer to use an ever
increasing number of cores

• A lot of this course is about concurrency
– It used to be a bit esoteric
– It has now become one of the most important things you'll

learn (in any of our courses)

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 36

Timesharing

• To support interactive use, create a timesharing OS:
– multiple terminals into one machine
– each user has illusion of entire machine to him/herself
– optimize response time, perhaps at the cost of throughput

• Timeslicing
– divide CPU equally among the users
– if job is truly interactive (e.g., editor), then can jump between

programs and users faster than users can generate load
– permits users to interactively view, edit, debug running

programs

7

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 37

• MIT CTSS system (operational 1961) was among the
first timesharing systems
– only one user memory-resident at a time (32KB memory!)

• MIT Multics system (operational 1968) was the first
large timeshared system
– nearly all OS concepts can be traced back to Multics!
– “second system syndrome”

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 38

• CTSS as an illustration of architectural and OS
functionality requirements

OS

User program

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 39

• In early 1980s, a single
timeshared VAX-11/780 (like
the one in the Allen Center
atrium) ran computing for the
entire CSE department.

• A typical VAX-11/780 was 1
MIPS (1 MHz) and had 1MB
of RAM and 100MB of disk.

• An Apple iPhone 4 is 1GHz
(x1000), has 512MB of RAM
(x512), and 32GB of flash
(x320).

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 40

Parallel systems

• Some applications can be written as multiple parallel
threads or processes
– can speed up the execution by running multiple

threads/processes simultaneously on multiple CPUs
[Burroughs D825, 1962]

– need OS and language primitives for dividing program into
multiple parallel activities

– need OS primitives for fast communication among activities
• degree of speedup dictated by communication/computation

ratio
– many flavors of parallel computers today

• SMPs (symmetric multi-processors)
• MPPs (massively parallel processors)
• NOWs (networks of workstations)
• Massive clusters (Google, Amazon.com, Microsoft)
• computational grid (SETI @home)

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 41

Personal computing

• Primary goal was to enable new kinds of applications
• Bit mapped display [Xerox Alto,1973]

– new classes of applications
– new input device (the mouse)

• Move computing near the display
– why?

• Window systems
– the display as a managed resource

• Local area networks [Ethernet]
– why?

• Effect on OS?

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 42

Distributed OS

• Distributed systems to facilitate use of geographically
distributed resources
– workstations on a LAN
– servers across the Internet

• Supports communications between programs
– interprocess communication

• message passing, shared memory
– networking stacks

• Sharing of distributed resources (hardware, software)
– load balancing, authentication and access control, …

• Speedup isn’t the issue
– access to diversity of resources is goal

8

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 43

Client/server computing

• Mail server/service
• File server/service
• Print server/service
• Compute server/service
• Game server/service
• Music server/service
• Web server/service
• etc.

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 44

Peer-to-peer (p2p) systems

• Napster
• Gnutella

– example technical challenge: self-organizing overlay
network

– technical advantage of Gnutella?
– er … legal advantage of Gnutella?

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 45

Embedded/mobile/pervasive computing

• Pervasive computing
– cheap processors embedded everywhere
– how many are on your body now? in your car?
– cell phones, PDAs, network computers, …

• Often constrained hardware resources
– slow processors
– small amount of memory
– no disk
– often only one dedicated application
– limited power

• But this is changing rapidly!

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 46

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 47

Ad hoc networking

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 48

The major OS issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources

ensured?
• protection: how is one user/program protected from another?
• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with

hardware or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information,

including across a network?

9

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 49

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

There are tradeoffs, not right and wrong!

9/28/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 50

CSE 451

• In this class we will learn:
– what are the major components of most OS’s?
– how are the components structured?
– what are the most important (common?) interfaces?
– what policies are typically used in an OS?
– what algorithms are used to implement policies?

• Philosophy
– you may not ever build an OS
– but as a computer scientist or computer engineer you need

to understand the foundations
– most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

– you will love this course!

