
1

CSE 451: Operating Systems
Autumn 2010

Module 16
Journaling File Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 2

In our most recent exciting episodes …

• Original Bell Labs UNIX file system
– a simple yet practical design
– exemplifies engineering tradeoffs that are pervasive in

system design
– elegant but slow

• and performance gets worse as disks get larger

• BSD UNIX Fast File System (FFS)
– solves the throughput problem

• larger blocks
• cylinder groups
• aggressive caching
• awareness of disk performance details

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 3

Caching (applies both to FS and FFS)

• Cache (often called buffer cache) is just part of
system memory

• It’s system-wide, shared by all processes
• Need a replacement algorithm

– LRU usually

• Even a small (4MB) cache can be very effective
• Today’s huge memories => bigger caches => even

higher hit ratios
• Many file systems “read-ahead” into the cache,

increasing effectiveness even further

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 4

Obtaining Performance: Caching

OS Disk
readblock
writeblock

read
write

Block in cache?

No…

• Why cache?

• How does it affect
applications?

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 5

Caching writes => problems when
crashes occur

• Some applications assume data is on disk after a
write (seems fair enough!)

• And the file system itself will have (potentially costly!)
consistency problems if a crash occurs between
syncs – i-nodes and file blocks can get out of whack

• Approaches:
– “write-through” the buffer cache (synchronous – too slow),
– NVRAM: write into battery-backed RAM (too expensive) and

then later to disk, or
– “write-behind”: maintain queue of uncommitted blocks,

periodically flush (unreliable – this is the sync solution –
used in FS and FFS)

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 6

FS and FFS are real dogs when a crash occurs

• Caching is necessary for performance
• Suppose a crash occurs during a file creation:

1. Allocate a free inode
2. Point directory entry at the new inode

• In general, after a crash the disk data structures may
be in an inconsistent state
– metadata updated but data not
– data updated but metadata not
– either or both partially updated

• fsck (i-check, d-check) are very slow
– must touch every block

• Must do this in “file system order” not in “disk order”
– worse as disks get larger!

2

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 7

Journaling file systems

• Became popular ~2002
• There are several options that differ in their details

– Ext3, ReiserFS, XFS, JFS, ntfs

• Basic idea
– update metadata, or all data, transactionally

• “all or nothing”
– if a crash occurs, you may lose a bit of work, but the disk will

be in a consistent state
• more precisely, you will be able to quickly get it to a consistent

state by using the transaction log/journal – rather than scanning
every disk block and checking sanity conditions

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 8

Where is the Data?

• In the file systems we have seen already, the data is
in two places:
– On disk
– In in-memory caches

• The caches are crucial to performance, but also the
source of the potential “corruption on crash” problem

• The basic idea of the solution:
– Always leave “home copy” of data in a consistent state
– Make updates persistent by writing them to a sequential

(chronological) journal partition/file
– At your leisure, push the updates (in order) to the home

copies and reclaim the journal space

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 9

Redo log

• Log: an append-only file containing log records
– <start t>

• transaction t has begun
– <t,x,v>

• transaction t has updated block x and its new value is v
– Can log block “diffs” instead of full blocks

– <commit t>
• transaction t has committed – updates will survive a crash

• Committing involves writing the redo records – the
home data needn’t be updated at this time

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 10

If a crash occurs

• Recover the log
• Redo committed transactions

– Walk the log in order and re-execute updates from all
committed transactions

– Aside: note that update (write) is idempotent: can be done
any non-zero number of times with the same result.

• Uncommitted transactions
– Ignore them. It’s as though the crash occurred a tiny bit

earlier…

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 11

Managing the Log Space

• A “cleaner” thread walks the log in order, updating
the home locations of updates in each transaction
– Note that idempotence is important here – may crash while

cleaning is going on

• Once a transaction has been reflected to the home
blocks, it can be deleted from the log

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 12

Impact on performance

• The log is a big contiguous write
– very efficient

• And you do fewer synchronous writes
– these are very costly in terms of performance

• So journaling file systems can actually improve
performance (immensely)

• As well as making recovery very efficient

3

11/14/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 13

Want to know more?

• CSE 444! This is a direct ripoff of database system
techniques
– But it is not what Microsoft Windows Longhorn (Vista) was

supposed to be before they backed off – “the file system is a
database”

– Nor is it a “log-structured file system” – that’s a file system in
which there is nothing but a log (“the log is the file system”)

• “New-Value Logging in the Echo Replicated File
System”, Andy Hisgen, Andrew Birrell, Charles
Jerian, Timothy Mann, Garret Swart
– http://citeseer.ist.psu.edu/hisgen93newvalue.html

