
1

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 1

CSE 451: Operating Systems
Autumn 2010

Module 5.5
Processes, Kernel Threads,

User-Level Threads

Ed Lazowska
lazowska@cs.washington.edu

570 Allen Center

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 2

What’s “in” a process?

• A process consists of (at least):
– An address space, containing

• the code (instructions) for the running program
• the data for the running program

– CPU state, consisting of
• The program counter (PC), indicating the next instruction
• The stack pointer register
• Other general purpose register values

– A set of OS resources
• open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run the
program
– or to re-start it, if it’s interrupted at some point

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 3

The OS gets control because of …

• Trap: Program executes a syscall
• Exception: Program does something unexpected

(e.g., page fault)
• Interrupt: A hardware device requests service

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 4

PCBs and CPU state

• When a process is running, its CPU state is inside the
CPU
– PC, SP, registers
– CPU contains current values

• When the OS gets control (trap, exception, interrupt), the
OS saves the CPU state of the running process in that
process’s PCB
– when the OS returns the process to the running state, it loads

the hardware registers with values from that process’s PCB

• This is called a context switch

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 5

The syscall

• How do user programs do something privileged?
– e.g., how can you write to a disk if you can’t execute an I/O

instructions?

• User programs must call an OS procedure – that is,
get the OS to do it for them
– OS defines a set of system calls
– User-mode program executes system call instruction

• Syscall instruction
– Like a protected procedure call

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 6

• The syscall instruction atomically:
– Saves the current PC
– Sets the execution mode to privileged
– Sets the PC to a handler address

• With that, it’s a lot like a local procedure call
– Caller puts arguments in a place callee expects (registers or

stack)
• One of the args is a syscall number, indicating which OS

function to invoke
– Callee (OS) saves caller’s state (registers, other control

state) so it can use the CPU
– OS function code runs

• OS must verify caller’s arguments (e.g., pointers)
– OS returns using a special instruction

• Automatically sets PC to return address and sets execution
mode to user

2

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 7

A kernel crossing illustrated

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read() handler in vector table

trap handler

sys_read() kernel routine
Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

ERET instruction

PC = saved PC
Enter user mode

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 8

Interrupts and exceptions work the
same way as traps

• Transition to kernel mode
• Save state of running process in PCB
• Handler routine deals with whatever occurred
• Choose a next process to run
• Restore that process’s CPU state from its PCB
• Execute an instruction that returns you to user mode

at the appropriate instruction

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 9

The OS kernel is not a process

• It’s just a block of code!
• (In a microkernel OS, many things that you normally

think of as the operating system execute as user-
mode processes. But the OS kernel is just a block of
code.)

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 10

Threads

• Key idea:
– separate the concept of a process (address space, OS

resources)
– … from that of a minimal “thread of control” (execution state:

stack, stack pointer, program counter, registers)

• This execution state is usually called a thread, or
sometimes, a lightweight process

thread

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 11

The design space

address
space

thread

one thread per process
many processes

many threads per process
many processes

one thread per process
one process

many threads per process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Linux, …

Key

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 12

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

3

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 13

(new) Address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 14

Kernel threads

• OS now manages threads and processes / address spaces
– all thread operations are implemented in the kernel
– OS schedules all of the threads in a system

• if one thread in a process blocks (e.g., on I/O), the OS knows about it,
and can run other threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
– orders of magnitude more expensive than a procedure call
– thread operations are all system calls

• context switch
• argument checks

– must maintain kernel state for each thread

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 15

In the beginning …

• Fork a process
– Creates an address space that’s a clone of the parent, with

one thread
– There’s a PCB that describes the address space and the OS

resources
– There’s a TCB that holds the CPU state and is the unit of

scheduling
– The TCB and the PCB are linked – e.g., so the OS knows

which set of page tables to use when scheduling a particular
thread

• First thread can create additional threads
– OS creates a new TCB, initializes CPU state (an entry point

must be provided in the “create” syscall)

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 16

address
space

thread

Mach, NT,
Linux, …

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

What happens when a
thread wants to:

• create another thread?
• terminate itself?
• wait for some condition?
• signal some condition?
• do I/O?

10/17/2010 © 2010 Gribble, Lazowska, Levy, Zahorjan 1710/17/2010 17

address
space

thread
os kernel

CPU

User-level threads
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

What happens when a
thread wants to:

• create another thread?
• terminate itself?
• wait for some condition?
• signal some condition?
• do I/O?

