CSE 451: Operating Systems

Section 1

Why are you here?

9/30/10

Why are you here?

*Because you want to work for
Microsoft and hack on the Windows
kernel?

9/30/10

Why are you here?

* Because you-wantto-workfor
Mi : el he Wind
kernel?

*%Because it fulfills a requirement and fits
your schedule?

9/30/10

9/30/10

Who cares about operating
systems?

% Operating systems techniques apply to
all other areas of computer science

% Data structures; caching; concurrency;
virtualization...

9/30/10

Who cares about operating
systems?

% Operating systems techniques apply to
all other areas of computer science

%k Data structures; caching; concurrency;
virtualization...

% Operating systems support all other
areas of computer science

9/30/10

Who are we?

*Peter Hornyack
*Abdul Salama

9/30/10

Who are we?

* Peter Hornyack
*Abdul Salama

*kWhat do we know?

9/30/10

9/30/10

Who are we?

*Peter Hornyack
*Abdul Salama

*kWhat do we know?

*Why are we here?

9/30/10

What is this section for?

*Projects
%k Questions!

*Extensions beyond lecture / textbook
material

9/30/10

Office Hours

9/30/10

Outline

X troduction

*Cvs. Java

*C language “features”
*C pitfalls

*Project O

9/30/10

9/30/10

Motivation: Why C?

*Why not write OS in Java?

9/30/10

Motivation: Why C?

*Why not write OS in Java?

X Interpreted Java code runs in VM; what
does VM run on?

9/30/10 14

Motivation: Why C?

*Why not write OS in Java?

* Interpreted Java code runs in VM; what
does VM run on?

X Precision:
X Instructions
*Timing
*Memory

9/30/10

C vs. Java: Compilation

Java C

% Packages % Header files

“import java.xyz” “#include xyz.h”
%k .class files %k .o files
% jar program %k linker program

* jar files * Executable files

%k libc
9/30/10 16

9/30/10

9/30/10

C vs. Java: Constructs C Language Features
Java C
*XPointer
* Classes % Structures ointers
% Public or private * All members “public” *Pass-by-value VS pass-by—reference
members)
* Methods % Functions *Structures
* Instantiated with class, k Implicitly “static”
or may be static *Typed efs
* References * Pointers *Explicit memory management
9/30/10 17 9/30/10 18
L] (] °
Pointers Function Pointers
int a = 5; int some fn(int x, char c) { ... }
int b = 6; // declares and defines a function
int *pa = &a; // declares a pointer to a int (*pt_fn) (int, char) = NULL;
// with value as the // declares a pointer to a function
// address of a // that takes an int and a char as
*pa = b; // changes value of a to b // arguments and returns an int
// (a == 6) pt _fn = &some fn;
pa = &b; // changes pa to point to // assigns pointer to some fn()’s
// b’s memory location (on // location in memory
// stack) int a = (*pt_fn) (7, ‘p’);
// sets a to the value returned by
// some fn (7, ‘p’)
9/30/10 19 9/30/10 20

Pointer Arithmetic

% Array variables are really just pointers:

int foo[2]; // foo is a pointer to the
// beginning of the array
* (foo+l) = 5; // the second int in the

// array is set to 5

*Don’t use pointer arithmetic unless you
have a good reason to

Pass-By-Value vs. Pass-By-
Reference

int doSomething(int x) {
return x+1;
}
void doSomethingElse (int *x) {
*x += 1;
}
void foo() {
int x = 5;
int y = doSomething(x); // x==5, y==6
doSomethingElse (&x) ; // x==6, y==6
}

9/30/10 22

9/3010 21
struct foo_s { // defines a type that
int x; // is referred to as a
int y; // “struct foo_s”.
}i // don’t forget this ;
struct foo s foo; // declares a struct
// on the stack
foo.x = 1; // sets the x field
// of the struct to 1
9/30/10 23

Typedefs

typedef struct foo s *foo t;
// creates an alias “foo_ t” for
// pointer to foo_s struct

foo t new foo =
(foo_t)malloc(sizeof (struct foo_s));
// allocate a foo s struct on the
// heap; new foo points to it

new_ foo->x = 2;
// “=>" operator dereferences the
// pointer and accesses the field x

9/30/10 24

9/30/10

Explicit Memory
Management
*Allocate memory on the heap:

void *malloc(size_ t size);
* Note: may fail!
%k Use sizeof () operator to get size

*Free memory on the heap:
void free(void *ptr);
* Pointer argument comes from previous

malloc()Ca”
9/30/10 25

Common C Pitfalls (1)

*What’s wrong and how to fix it?

char* city name (float lat, float long) {
char name[100];

return name;

9/30/10 26

Common C Pitfalls (1)

*Problem: returning pointer to local
(stack) memory

*Solution: allocate on heap

char* city name (float lat, float long) {
char* name =
(char*)malloc (100*sizeof (char)) ;

return name;

}

9/30/10 27

Common C Pitfalls (2)

*What’s wrong and how to fix it?

char* buf = (char*)malloc(32);
strcpy (buf, argvi(l]);

9/30/10 28

9/30/10

Common C Pitfalls (2)

*Problem: potential buffer overflow

*Solution:

int buf size = 32;

char* buf =
(char*)malloc (buf size*sizeof (char));

strncpy (buf, argv[1l], buf size);

*Why are buffer overflow bugs
important?

9/30/10

29

Common C Pitfalls (3)

*What’s wrong and how to fix it?

char* buf = (char*)malloc(32);
strncpy (buf, “hello”, 32);
printf (“%s\n”, buf);

buf = (char*)malloc(64);
strncpy (buf, “bye”, 64);
printf (“%s\n”, buf);

free (buf) ;

9/30/10

30

Common C Pitfalls (3)

*Problem: memory leak

*%Solution:

char* buf = (char*)malloc(32);
strncpy (buf, “hello”, 32);
printf (“%$s\n”, buf);

free (buf) ;

buf = (char*)malloc(64);

9/30/10

31

Common C Pitfalls (4)

*What’s wrong (besides ugliness) and
how to fix it?

char fool[2];

foo[0] = ‘H';

foo[l] = ‘i’;
printf (“$s\n”, foo);

9/30/10

32

9/30/10

Common C Pitfalls (4)

*Problem: string is not NULL-terminated

*Solution:
char fool[3];
foo[0] ‘H';
foo[l] ‘if;
foo[2]

\\OI;
printf (“%$s\n”, &foo);

Xk Easier Wway: char *foo = “Hi”;

9/30/10

33

Project 0

*Description is on course web page now
*Due Friday October 8, 11:59pm

*Work individually
% Remaining projects in groups of 3

9/30/10

34

Project 0 Goals

*Get (re-)acquainted with C
programming

*Practice working in C / Linux
development environment

%k Create data structures for use in later
projects

9/30/10

35

Project 0 Tips

*Try these tools:
%k man pages
*valgrind
*gdb

*Write your test cases first

9/30/10

36

9/30/10

Project 0 Tips
*Part 1: queue
*To find bugs, try valgrind, then gdb

kPart 2: hash table

* Perform memory management carefully
% Check using valgrind

9/30/10 37

9/30/10

38

9/30/10

10

