CSE 451: Operating Systems

Section 3
Project O recap, Project 1

Andrew Tanenbaum talk

10/14/10

Andrew Tanenbaum talk

%k Microkernels

%k Tanenbaum-Torvalds debate:
http://oreilly.com/catalog/opensources/book/

appa.html

%k Software bloat

% |s software really getting slower faster than
hardware is getting faster?

10/14/10

Project 0: queue problems
* Must check for empty queues before
reversing or sorting

*Should test on several queues
* Short, long
% Randomized order

10/14/10

10/14/10



Project 0: common problem #1

% Linear probing misunderstandings
% Must mark cells as vacated (different than free)

* Consider hash table size of 10
% Insert keyl -> hash =5 ; Insert key2 -> hash = 15
% Occupy positions 5 & 6
* Delete keyl

* Lookup key2: 5 is empty but need to look at 6
also

10/14/10

Project 0: common problem #2

* Properly handling set_hash_function()

* Consider the following sequence:
* Insert keyl -> hash = 5 under hash function a

%k Set hash function to b such that keyl -> hash =6
under hash function b

% Look up key1, turns out to be empty!

10/14/10

Project 0: common problem #2

%k Solutions?
%k Rehash

% Prevent user from changing hash function if
hash table is non-empty

10/14/10

Project 0: other problems

% Resizing hash table

% Using int or char as key type instead of
general type (void *)

* Memory leaks

10/14/10

10/14/10



Coding style

* Describe the interface when declaring

10/14/10

functions in .h files
%k What does it do?

% What assumptions does it make about its
arguments?

%k What does it return?
%k How does it indicate an error condition?

Coding style

* Write comments for tricky implementation

sections:

%k Bad comment:
somePtr = NULL;

% Good comment:
somePtr = NULL;

10/14/10

//

/7
//
/7

/7

Set somePtr to NULL

Always reset the
pointer to NULL
after the shared
memory it points to
has been freed

Coding style

% Always use header guards:

10/14/10

#ifndef HASH TABLE H
#define HASH TABLE H

// header file code here...

#endif /* HASH TABLE H */

Coding style

* Properly indent nested blocks

%k man 1 indent

% Let your text editor do it for you!

10/14/10

10/14/10



Coding style

% Be consistent with your naming
% Functions: pick a style and stick to it
% set_hash_function() style is ok
% SetHashFunction() style also ok

* End typenames in _t
typedef foo struct * foo t;

% Choose reasonable variable names
int n comp conns; // BAD
int num completed connections; // GOOD

10/14/10

Memory management

void do_stuff (char *buf, int len) {

free (buf) ;
}

int main() {
char *mybuf =
(char *)malloc (LEN*sizeof (char));
do stuff (mybuf, LEN);

// Double free: undefined
// behavior!

free (mybuf) ;

}

10/14/10 14

Memory management

% Always be explicit about who owns memory

% If a function allocates some memory that the
caller must free, say so!

* If a function frees some memory that the caller
should no longer use, say so!

% Define pairs of allocate and free functions

* Ideally, whoever calls allocate function also calls
free function; if not, carefully consider usage

10/14/10

Advanced memory mgmt.

* What if multiple processes or threads are
accessing the same structure in memory?

* When can we free?
% Reference counting

* How does memory management within the
kernel differ?
% Slab allocator [Bonwick '94]

10/14/10 16

10/14/10



Project 1

10/14/10

Project 1

* Due Monday at 11:59pm!

*Include all group members & group letter in
write-up

* Follow same turnin instructions again
% Only one team member needs to run turnin

10/14/10

Project 1 turnin

% Preserve directories when submitting
changed files

% When we extract your changed files, they should
go to the right directory, so it is unambiguous
which file you changed

% This is easy to do with tar command

) Writeup requires a list of modified files (#3):
please use full path name

10/14/10

Project 1 notes

%k Special functions should be used to copy
data between user space and kernel
* Why?
* access_ok(), copy_from_user(), copy_to_user():
look for example usage in kernel
* Definition, gory details: arch/i386/lib/usercopy.c

10/14/10

20

10/14/10



Project 1 notes

* Where does printk() output go?
% Possibly to console
* include/linux/kernel.h: defines KERN_XYZ log levels
* dmesg command
* /var/log/messages

10/14/10

21

Project 1 tips

* Re-read the project description for hints
% Read the man pages!
* Navigating Linux kernel code: see Section 2

%k Get started!!

10/14/10 22

10/14/10



