CSE 451: Operating Systems

Section 6
Project 2b; Midterm Review

Part 4: web server

*web/sioux.c — singlethreaded web server

% Read in command line args, run the web server
loop

11/4/10

Project 2b

*Parts 4, 5 and 6 of project 2
*Due at 11:59pm, Wednesday November 17

11/4/10

Part 4: web server

*web/sioux_run.c — the web server loop
% Open a socket to listen for connections
(Listen(2))
>k Wait for a connection (accept (2))
% Handle connection:
% Parse the HTTP request
* Find and read the requested file
* Send the file back

* Close the connection
—e

11/4/10

11/4/10



Thread pools

Task Queue

-~ — O l
Thread PO
Pool O O O e O O

Completed Tasks |

@D «— O «

Image from http://en.wikipedia.org/wiki/Thread pool_pattern
More info: http://www.ibm.com/developerworks/java/library/j-jtp0730.html

11/4/10

Hints

%) Each connection is identified by a socket file
descriptor returned by accept (2)
% File descriptor (fd) is just an int

*Threads should sleep while waiting for a
new connection
* Condition variables are perfect for this

11/4/10

What you need to do

%k Make the web server multithreaded

* Create a thread pool

% Suggestion: create separate thread_pool.h,
thread_pool.c

%k Wait for a connection
* Find an available thread to handle the request
% Request waits (where?) if all threads busy

% Once the request is handed to a thread, it uses
the same processing code as before

11/4/10

Hints

* Don’t forget to protect any global variables
% Use mutexes and CVs from part 2

* Develop and test with pthreads initially
% Use only the sthread.h interface
* Mostly modify sioux_run.c, and your own

files

11/4/10



Part 5: preemption

* What we give you:
* Timer interrupts
* Function to turn interrupts on and off

% Synchronization primitives
atomic_ test and set,atomic clear
% x86 architecture only

11/4/10

sthread_preempt.h

/* Start preemption - func will be called
* every period microseconds
*/
void sthread_preemption_init
(sthread ctx start func t func,
int period);

/* Turns interrupts on (LOW) or off (HIGH)
* Returns the last state of the

* interrupts

*/

int splx(int splval);

11/4/10

Part 5: preemption

* What you have to do:

% Add code that will run every time a timer
interrupt is generated

% Add synchronization to your part 1 and part 2
implementations so that everything works with
preemptive thread scheduling

% Can be done independently of part 4

11/4/10 10

sthread_preempt.h

atomic test and set - using the native
compare and exchange on the Intel x86.

*
*
*
* Example usage:

* lock t lock;

* while (atomic test and set (&lock))
* {} // spin

* _critical section

* atomic clear (&lock);

*/

int atomic_test and set(lock t *1);
void atomic clear(lock t *1);

11/4/10 12

11/4/10



Signals
% Used to notify processes of events,
asynchronously
% Every process has a signal handler table

* When a signal is sent to a process, OS
interrupts that process and calls the handler
registered for that signal

11/4/10

11/4/10

What you need to do

% Add a call to sthread_preemption_init() as
the last line in your sthread_user_init()
function
% sthread_preemption_init() takes a pointer to a

function that will be called on each timer
interrupt

% This function should cause thread scheduler to switch
to a different thread!

11/4/10

Signal manipulation

% A process can:
% Override the default signal handlers using
sigaction (2)
% Block / unblock signals with sigprocmask (2)
% Send a signal via kill (2)

%k Signals:

% SIGINT (CTRL-C), SIGQUIT (CTRL-\),
SIGKILL, SIGFPE, SIGALRM, SIGSEGV..

11/4/10 14

What you need to do

* Add synchronization to critical sections in

thread management routines

% Think: what would happen if the code was
interrupted at this point?
* Would it resume later with no problems?
% Could the interrupting code mess with any variables

that this code is currently using?

% Don’t have to worry about simplethreads code

that you didn’t write (i.e. sthread_switch):

already done for you
11/4/10 16



Interrupt disabling

Non-thread-safe

/* returns next thread
* on the ready queue */

sthread t
sthread user next () {

sthread t next;

next = sthread dequeue
(ready_q);
if (next == NULL)
exit (0);

return next;

}
1114110

Thread-safe

sthread t
sthread user next () {

sthread_t next;
int old = splx(HIGH);
next = sthread dequeue

(ready_q);
splx (old);
if (next == NULL)
exit (0);

return next;

Race conditions and testing

* How can you test your preemption code?

* How can you know that you’ve found all of
the critical sections?

11/4/10

Atomic locking

*Sowhatisatomic test and set()
for?

* Primarily to implement higher-level
synchronization primitives (mutexes, CVs)

* One way to think about preemption-safe
thread library:
% Disable/enable interrupts in “library” context
% Use atomic locking in “application” context

11/4/10

Part 6: report

* Covers all parts of project 2
* Discuss your design decisions

%k Performance evaluation:

% Measure throughput and response time of your

web server using web benchmarking tool

% Vary the number of threads and number of “clients”

* Present results in graphical form
% Explain results: expected or not?

11/4/10

20

11/4/10



Project 2 questions?

11/4/10

21

11/4/10

The kernel

%k Kernel mode vs user mode

* How these modes differ conceptually and from
the CPU's point of view

% How we switch between the two

X Interrupts

11/4/10

23

Midterm

* Concepts to know:

11/4/10 22

System calls

* What they are

* What they do

*How they do it

*What hardware is involved

%k Who uses them and when

11/4/10 24



Processes and threads

% Kernel processes, kernel threads, and user
threads

%k How these differ from one another
* Context switching
%k Process and thread states

%k fork, exec, wait

11/4/10 25

11/4/10

Synchronization

% Critical sections
%k Locks and atomic instructions

* Mutexes, semaphores, and condition
variables

X% Monitors

* Ways to detect / avoid deadlock

11/4/10 27

Scheduling
* Different scheduling algorithms and their
tradeoffs
% Average response time, various “laws”
%k Starvation

% Cooperative vs. preemptive scheduling

11/4/10 26

Memory management

* Paging

* Segmentation

* Address translation
* Page tables

* Page replacement

11/4/10 28



Tips

%k Focus on lecture slides

%k Review textbook, section slides and project
writeups to emphasize key concepts and fill
in gaps

% On Friday:
% Arrive early
% Focus on key points
) Work quickly; finish easy problems first

11/4/10 29

11/4/10



