CSE 451: Operating Systems

Section 7
File Systems; Project 3

Project 2

k Done!

11/18/10

Project 3

% Due: Thursday, December 9, 11:59pm

11/18/10

Project 3

* Work with a real file system
% csed51fs: simple file system for Linux

* Goals:
* Understand how it works
* Modify implementation to:
% Increase maximum size of files (currently 10KB)
% Allow for longer file names (currently 30 chars)
* Allow for more files (currently ~8000)

11/18/10

11/18/10

Project 3 procedure

%k Build a kernel module for cse451fs

% On a virtual machine running Linux kernel:
* Load the cse451fs module
% Format the file system using (modified) mkfs tool
* Mount the file system
%k Test using tools like Is, cat, etc.

* Try this procedure with given code first
% Then carefully read writeup again, and go!

11/18/10

Linux file system layers

Application
Fil directori _{ User
iles, directories — — — — — — — - - .
Kernel
VFS
Inodes, direntries/\
csed51fs ext2 ext3 vfat
Blocks /
Buffer cache & cache for disk blocks

‘— Disk drivers < “block device’

Inodes

% Inode: a structure maintaining all metadata
about a file (or directory)
* Inode number (unique ID of inode)
% Permissions, timestamps
* Pointers to data blocks

%k Inode does not contain: name of file

% One or more file names can point (link) to the
same inode

11/18/10

Directories

% Directory entry (“dirent”): a name + inode
number pair

% Directory: a file that contains a list of
directory entries

11/18/10 8

11/18/10

cse451fs disk layout

boot |superblock |data map |inode blocks| data blocks

) Superblock: knows layout of rest of disk

% Contains parameters such as size and location of
inode blocks, data blocks

% Contains inode map:
%k Bit array, tracks which inodes are currently in use

% Data map:
% Bit array, tracks which data blocks are in use

11/18/10

cse451fs disk layout

boot |superblock |data map |inode blocks| data blocks

%k Inode blocks:
%k All inodes reside here

% Data blocks:
* File / directory data resides in blocks here

11/18/10

Example disk layout

Size in blocks:
1 1 1 85 4008

boot |superblock |data map |inode blocks| data blocks

struct csed51_super_block {

1365 __ul6 s_nNumInodes; // inode map is tail of superblock
2 __ul6 s_nDataMapStart; // block # of first data map block
1 __u32 s_nDataMapBlocks; // data map size, in blocks
3 __u32 s_nInodeStart; // block # of first inode block
85 __u32 s_nNumInodeBlocks; // number of blocks of inodes
88 __u32 s_nDataBlocksStart; // block # of first data block
4008 __u32 s_nDataBlocks; // number of blocks of data
0x451f _ ulé s_magic; // magic number

unsigned long s_imap; // name for inode map

bi

Sample values for a 4MB disk with 4 files and 3 dirs using 1KB blocks

csed451fs inode structure

#define CSE45 1 NUMDATAPTRS 10
struct csed451 inode {

~ul6 1 mode;

~ul6é i nlinks;

~ule i uid;

_ule i gid;

time t i atime;

time t i mtime;

time t i ctime;

~u32 i filesize;

~u32 1 datablocks[CSE451 NUMDATAPTRS];
}i

11/18/10

11/18/10

csed51fs inode structure

%k Remember, inodes themselves are stored in
blocks
* What's the size of the inode struct?
% So how many inside a 1K block?

% Max number of inodes (max number of files)
usually decided when file system is formatted

* mkfs heuristic: create an inode for every three data
blocks

11/18/10

Data blocks

% Blocks for regular files Data block for /

contain ﬁle data Dir. entry | Field Value
0 Inode 1
* Blocks for directories) ?a”;e)
. . - noae
contain dlrectory entries: Name
2 Inode 2
#define MAXDIRNAMELENGTH 30 Name | vetc
struct cse451 dir entry { 3 Inode 3
__ulé6 inode; Name “bin”
char name 2 Inode)
[MAXDIRNAMELENGTH] ; Name 0

}i

11/18/10

Example data block usage

% For a 4MB file system with 1KB blocks, with hierarchy:
/

etc
passwd
fstab
bin
sh
date
File/Directory Size Data Blocks
/ 4 entries + 1 null entry 1
/etc 4 entries + 1 null entry 1
/bin 4 entries + 1 null entry 1
/etc/passwd 1024 bytes 1
/etc/fstab 100 bytes 1
/bin/sh 10,000 bytes 10
/bin/date 5,000 bytes 5
Total: 20

11/18/10

Project 3 requirements

* Increase the maximum file size
* Increase the maximum file name length

%k Increase the maximum number of files

11/18/10

11/18/10

Larger file sizes

% One way: add more pointers to data blocks
%k Just changing this constant is not enough!!

% Goal: be efficient for small files but allow large files

* Come up with a better design/structure for locating
data blocks

%k See lecture slides: indirect block pointers

% You don’t have to support arbitrarily large files

% But max file size should be much larger than it used to
be

11/18/10

Longer file names

* Goal (again): be efficient for short file names
but allow large file names
% Again, just changing the constant is not sufficient

) Recommended approach:

% Store long names in a separate data block, and
keep a pointer to that in the directory entry
%k Short names can be stored as they are

11/18/10

Longer file names

% Other possible approaches:
% Combine multiple fixed-length dir entries into a
single long dir entry
% Easier if the entries are adjacent
* Past Windows file systems have done this
% Put a length field in the dir entry and store
variable length strings

* Need to make sure that when reading a directory, you
are positioned at the beginning of an entry

11/18/10

More files

*k Number of inodes is decided at format time

* Total number of inodes is limited by the
number of bits in the inode map
* The inode map is at the end of the superblock

* How many inodes will you need?

11/18/10

20

Getting started with the code

* Understand the source of the limits in the
existing implementation (both cse451fs and
mkfs)

%k Larger file sizes:
%k super.c: get_block()

% References to i_datablock[] array in an inode will
have to change

11/18/10 21

Getting started with the code

* Longer file names:

* Code changes largely in dir.c: add_entry(),
find_entry()

* In mkfs, change how the first two entries (for “” and
“.) are stored

* More files:
* super.c: csed451_fill_super() reads maps
%k inode.c: cse451_new_inode() uses inode map

* In mkfs, change how formatting and superblock init
is performed

11/18/10 22

Linux buffer cache code

* To manipulate disk blocks, file system goes
through the buffer cache

% Two data structures: buffer_head, b_data

* For a given disk block, buffer manager could be:
* Completely unaware of it (cache miss)
* No buffer_head exists, block not in memory
% Aware of block information (cache miss)
% buffer_head exists, but block data (b_data) not in memory
% Aware of block information and data (cache hit)
% Both the buffer_head and its b_data are valid

11/18/10 23

Accessing blocks

% To read a block, FS uses sb_bread():

% Finds the corresponding buffer_head
% Creates if doesn’t exist

%k Reads data from buffer cache if it’s already in
memory; otherwise, reads from disk (and stores it in
the cache)

% To write a block:
%k mark_buffer_dirty(): mark buffer as changed
* brelse(): release to kernel (which does the writing)

11/18/10 24

11/18/10

Tool limitation warning

% Some items in Linux kernel are limited to
256 chars
% e.g. VFS, Is
% Be careful when testing long filenames!

*dd is useful for creating large test files
dd if=/dev/zero of=200k bs=1024 count=200

%k df is useful to check that you’re freeing
everything correctly

11/18/10 25

gcc warning

%} gcc might insert extra space into structs
* How big do you think this is?

struct foo { char a; int b; }

% Why is this a problem?

%k What if foo represents something you want on disk
(i.e. directory entries)?

* Discrepancy between the disk layout and memory
layout

11/18/10 26

gcc warning

%k Fix:
struct bar {
char a;
int b;
} _attribute ((packed));

%k sizeof(bar) is now 5

* Real fix: don’t make any assumptions in your
code about size of structs!

11/18/10 27

11/18/10 28

11/18/10

