CSE 451: Operating Systems Section 9 Final exam review ### Final exam review - *Goal of this section: key <u>concepts</u> you should understand - * Not just a summary of lectures - * Slides may not cover all topics that will be on exam 12/9/10 2 ## **Thread management** - *Queues - *Synchronization - *Preemption 12/9/10 ## **Memory management** - *Purposes: - **★** Resource partitioning / sharing - * Isolation - * Usability - *Paging - *Segmentation 12/9/10 4 | ## Virtual memory *What happens on a virtual memory access? 12/9/10 5 ### Virtual memory virtual address virtual page # offset physical memory page frame 0 page table page frame 1 physical address page page frame # page frame # offset frame 2 frame 3 page Note: Each process frame Y has its own page table! 12/9/10 © 2010 Gribble, Lazowska, Levy, Zahorjan ### Virtual memory - *What happens on a virtual memory access? - * Address translation: who performs it? - * Page table lookup - * TLB - * Page fault? - * Page replacement - * Process/queue management - **★**How does all of this overhead pay off? - * Locality! 12/9/10 6 ### Page replacement - *Algorithms: - * Belady, FIFO, LRU, LRU clock / NRU, working set... - * Local vs. global - *How/why are any of these better or worse than the others? - *What happens when paging goes wrong? - * Thrashing ### Advanced virtual memory - *What problem does a TLB address? - *What problem do two-level page tables address? - * What's the key concept? 12/9/10 12/9/10 ### Secondary storage - *Memory forms a hierarchy - *Different levels of disk abstraction: - * Sectors - * Blocks - * Files - *What factor most influences the ways that we interact with disks? 12/9/10 11 ### Advanced virtual memory - *What problem does a TLB address? - *What problem do two-level page tables address? - * What's the key concept? - * Indirection ### Secondary storage - **★**Memory forms a <u>hierarchy</u> - *Different levels of disk abstraction: - * Sectors - * Blocks - * Files - *What factor most influences the ways that we interact with disks? - * Latency 2/9/10 12 # Memory hierarchy 100 bytes CPU registers < 1 ns 32KB L1 cache 1 ns 256KB L2 cache 4 ns 1GB Primary Memory 60 ns 1TB Secondary Storage 10 ms 1PB Tertiary Storage 1s-1hr * Each level acts as a cache of lower levels # File systems - *What does a file system give you? - **★** Useful abstraction for secondary storage - **★** Organization of data - * Hierarchy of directories and files - * Sharing of data 12/9/10 14 # File system internals - * Directories - *Directory entries - *Inodes - *Files: - * One inode per file - * Multiple directory entries (links) per file 12/9/10 # Inode-based file system - *Sequence of steps when I run echo "some text" > /homes/pjh/file.txt? - * Open file: - * Get inode for / -> get data block for / - * Read directory entry for / -> get inode for /homes - * Repeat... -> get data block for file.txt, check permissions - * Write to file: - * Modify data block(s) for file.txt in buffer cache - * Close file: - * Mark buffer as dirty, release to buffer cache - * Kernel flushes dirty blocks back to disk at a later time 18 ### Other file systems - *What problem does each of these address? - * BSD Unix fast file system (FFS): - * Performance: smarter physical disk layout - **★** Journaling file systems (JFS): - * Reliability: transactions prevent inconsistencies after crash - * Berkeley log-structured file system (LFS): - * Performance: even smarter physical disk layout? 12/9/10 # Networking - *Layering - *Encapsulation 12/9/10 ### **RAID** - *<u>Striping</u>: read/write from multiple disks simultaneously - * Improves performance - * Hurts reliability - * <u>Parity</u>: store redundant information to allow data recovery after disk failures - * Improves reliability - * Hurts performance 12/9/10 ### **RPC** **★**Benefits: 17 - * Low-level details taken care of for you - * Natural interface - **★**Implementation issues: - * Network failures / retries - * Architecture differences - * Performance ### Distributed file systems - *Why do we want them? - * Location independence - * Large-scale data sharing - *Why are they hard? - * Consistency - * Replication - * Performance - **★**Understand the target workloads 12/9/10 21 ### Distributed systems *Scalability * Limited by sharing 12/9/10 22 ### Virtual machine monitors - *VMM is an additional <u>layer</u> between OS and hardware - * Can interpose on instruction execution, memory accesses, I/O requests, and network communication 12/9/10 23 ### **Security** - *Symmetric (secret key) vs. asymmetric (public key) encryption - **★**Privacy/confidentiality vs. integrity ### Cool uses for VMs ### *Accountable Virtual Machines - * Andreas Haeberlen, University of Pennsylvania; Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel, Max Planck Institute for Software Systems - ***** OSDI 2010 - * http://www.usenix.org/event/osdi10/tech/full-papers/Haeberlen.pdf - * http://www.usenix.org/event/osdi10/tech/slides/haeberlen.pptx 12/9/10 25 12/9/10 26