CSE 451: Operating Systems

Section 9
Final exam review

Final exam review

- *Goal of this section: key <u>concepts</u> you should understand
 - * Not just a summary of lectures
 - * Slides may not cover all topics that will be on exam

12/9/10

2

Thread management

- *Queues
- *Synchronization
- *Preemption

12/9/10

Memory management

- *Purposes:
 - **★** Resource partitioning / sharing
 - * Isolation
 - * Usability
- *Paging
- *Segmentation

12/9/10

4 |

Virtual memory

*What happens on a virtual memory access?

12/9/10

5

Virtual memory virtual address virtual page # offset physical memory page frame 0 page table page frame 1 physical address page page frame # page frame # offset frame 2 frame 3 page Note: Each process frame Y has its own page table! 12/9/10 © 2010 Gribble, Lazowska, Levy, Zahorjan

Virtual memory

- *What happens on a virtual memory access?
 - * Address translation: who performs it?
 - * Page table lookup
 - * TLB
 - * Page fault?
 - * Page replacement
 - * Process/queue management
- **★**How does all of this overhead pay off?
 - * Locality!

12/9/10

6

Page replacement

- *Algorithms:
 - * Belady, FIFO, LRU, LRU clock / NRU, working set...
 - * Local vs. global
- *How/why are any of these better or worse than the others?
- *What happens when paging goes wrong?
 - * Thrashing

Advanced virtual memory

- *What problem does a TLB address?
- *What problem do two-level page tables address?
 - * What's the key concept?

12/9/10

12/9/10

Secondary storage

- *Memory forms a hierarchy
- *Different levels of disk abstraction:
 - * Sectors
 - * Blocks
 - * Files
- *What factor most influences the ways that we interact with disks?

12/9/10

11

Advanced virtual memory

- *What problem does a TLB address?
- *What problem do two-level page tables address?
 - * What's the key concept?
 - * Indirection

Secondary storage

- **★**Memory forms a <u>hierarchy</u>
- *Different levels of disk abstraction:
 - * Sectors
 - * Blocks
 - * Files
- *What factor most influences the ways that we interact with disks?
 - * Latency

2/9/10 12

Memory hierarchy 100 bytes CPU registers < 1 ns 32KB L1 cache 1 ns 256KB L2 cache 4 ns 1GB Primary Memory 60 ns 1TB Secondary Storage 10 ms 1PB Tertiary Storage 1s-1hr * Each level acts as a cache of lower levels

File systems

- *What does a file system give you?
 - **★** Useful abstraction for secondary storage
 - **★** Organization of data
 - * Hierarchy of directories and files
 - * Sharing of data

12/9/10 14

File system internals

- * Directories
- *Directory entries
- *Inodes
- *Files:
 - * One inode per file
 - * Multiple directory entries (links) per file

12/9/10

Inode-based file system

- *Sequence of steps when I run echo "some text" > /homes/pjh/file.txt?
 - * Open file:
 - * Get inode for / -> get data block for /
 - * Read directory entry for / -> get inode for /homes
 - * Repeat... -> get data block for file.txt, check permissions
 - * Write to file:
 - * Modify data block(s) for file.txt in buffer cache
 - * Close file:
 - * Mark buffer as dirty, release to buffer cache
 - * Kernel flushes dirty blocks back to disk at a later time

18

Other file systems

- *What problem does each of these address?
 - * BSD Unix fast file system (FFS):
 - * Performance: smarter physical disk layout
 - **★** Journaling file systems (JFS):
 - * Reliability: transactions prevent inconsistencies after crash
 - * Berkeley log-structured file system (LFS):
 - * Performance: even smarter physical disk layout?

12/9/10

Networking

- *Layering
- *Encapsulation

12/9/10

RAID

- *<u>Striping</u>: read/write from multiple disks simultaneously
 - * Improves performance
 - * Hurts reliability
- * <u>Parity</u>: store redundant information to allow data recovery after disk failures
 - * Improves reliability
 - * Hurts performance

12/9/10

RPC

★Benefits:

17

- * Low-level details taken care of for you
- * Natural interface
- **★**Implementation issues:
 - * Network failures / retries
 - * Architecture differences
 - * Performance

Distributed file systems

- *Why do we want them?
 - * Location independence
 - * Large-scale data sharing
- *Why are they hard?
 - * Consistency
 - * Replication
 - * Performance
- **★**Understand the target workloads

12/9/10

21

Distributed systems

*Scalability

* Limited by sharing

12/9/10 22

Virtual machine monitors

- *VMM is an additional <u>layer</u> between OS and hardware
 - * Can interpose on instruction execution, memory accesses, I/O requests, and network communication

12/9/10

23

Security

- *Symmetric (secret key) vs. asymmetric (public key) encryption
- **★**Privacy/confidentiality vs. integrity

Cool uses for VMs

*Accountable Virtual Machines

- * Andreas Haeberlen, University of Pennsylvania; Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel, Max Planck Institute for Software Systems
- ***** OSDI 2010
 - * http://www.usenix.org/event/osdi10/tech/full-papers/Haeberlen.pdf
 - * http://www.usenix.org/event/osdi10/tech/slides/haeberlen.pptx

12/9/10 25

12/9/10 26