
1

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 1

CSE 454

HTTP + Server Architecture

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 2

Previously
• Introduction
• History
• Networking

– IP
– TCP
– DNS

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 3

Outline
• HTTP Protocol
• Service Architecture & Scaling

• For next time
– Mailing list
– Reading

• HTTP Made easy
• Responsibilities
• Mercator

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 4

Connecting on the WWW

Server OS

Web Server

Internet

Client OS

Web Browser

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 5

What happens when you click?
• Suppose

– You are at www.yahoo.com/index.html
– You click on www.grippy.org/mattmarg/

• Browser uses DNS => IP addr for
www.grippy.org

• Opens TCP connection to that address
• Sends HTTP request:

Get /mattmarg/ HTTP/1.0
User-Agent: Mozilla/2.0 (Macintosh; I; PPC)
Accept: text/html; */*
Cookie: name = value
Referer: http://www.yahoo.com/index.html
Host: www.grippy.org
Expires: …
If-modified-since: ...

Request

Request
Headers

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 6

HTTP Response

• One click => several responses

• HTTP1.0: new TCP connection for each elt/page
• HTTP1.1: KeepAlive - several requests/connection

HTTP/1.0 200 Found
Date: Mon, 10 Feb 1997 23:48:22 GMT
Server: Apache/1.1.1 HotWired/1.0
Content-type: text/html
Last-Modified: Tues, 11 Feb 1999 22:45:55 GMT

Response
1st header

Image/jpeg, ...

Status

2

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 7

Response Status Lines
• 1xx Informational
• 2xx Success

– 200 Ok
• 3xx Redirection

– 302 Moved Temporarily
• 4xx Client Error

– 404 Not Found
• 5xx Server Error

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 8

HTTP Methods
• GET

– Bring back a page
• HEAD

– Like GET but just return headers
• POST

– Used to send data to server to be processed (e.g. CGI)
– Different from GET:

• A block of data is sent with the request, in the body,
usually with extra headers like Content-Type: and
Content-Length:

• Request URL is not a resource to retrieve; it's a
program to handle the data being sent

• HTTP response is normally program output, not a
static file.

• PUT, DELETE, ...

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 9

Cookies
• Small piece of info

– Sent by server as part of response header
– Stored on disk by browser; returned in request header
– May have expiration date (deleted from disk)

• Associated with a specific domain & directory
– Only given to site where originally made
– Many sites have multiple cookies
– Some have multiple cookies per page!

• Most Data stored as name=value pairs
• See

– C:\Program Files\Netscape\Users\default\cookies.txt
– C:\WINDOWS\Cookies

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 10

Logging Web Activity
• Most servers support “common logfile format” or

“extended logfile format”
• Apache lets you customize format
• Every HTTP event is recorded

– Page requested
– Remote host
– Browser type
– Referring page
– Time of day

• Applications of data-mining logfiles ??

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 11

Connecting on the WWW

Server OS

Web Server

Internet

Client OS

Web Browser

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 12

Client-Side View

Web Sites

Internet

Content rendering engine
Tags, positioning, movement

Scripting language interpreter
Document object model
Events
Programming language itself

Link to custom Java VM
Security access mechanisms
Plugin architecture + plugins

3

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 13

Server-Side View
Database-driven content
Lots of Users

Scalability
Load balancing

Often implemented with
cluster of PCs

24x7 Reliability
Transparent upgrades

Clients

Internet

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 14

Trade-offs in Client/Server Arch.
• Compute on clients?

– Complexity: Many different browsers
• {Firefox, IE, Safari, …} × Version × OS

• Compute on servers?
– Peak load, reliability, capital investment.
+ Access anywhere, anytime, any device
+ Groupware support (shared calendar, …)
+ Lower overall cost (utilization & debugging)
+ Simpler to update service

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 15

Dynamic Content
• We want to do more via an http request

– E.g. we’d like to invoke code to run on the server.
• Initial solution: Common Gateway
Interface (CGI) programs.

• Example: web page contains form that
needs to be processed on server.

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 16

CGI Code
• CGI scripts can be in any language.
• A new process is started (and terminated)
with each script invocation (overhead!).

• Improvement I:
– Run some code on the client’s machine
– E.g., catch missing fields in the form.

• Improvement II:
– Server APIs (but these are server-specific).

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 17

Java Servlets
• Servlets : applets that run on the server.

– Java VM stays, servlets run as threads.
• Accept data from client + perform computation
• Platform-independent alternative to CGI.

• Can handle multiple requests concurrently
– Synchronize requests - use for online conferencing

• Can forward requests to other servers
– Use for load balancing

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 18

Java Server Pages (JSP)
Active Server Pages (ASP)

• Allows mixing static HTML w/ dynamically
generated content.

• JSP is more convenient than servlets for
the above purpose.

4

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 19

Tiered Architectures
1-tier = dumb terminal smart server.
2-tier = client/server.
3-tier = client/application server/database.

Why decompose the server?

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 20

Two-Tier Architecture

TIER 1:
CLIENT

TIER 2:
SERVER Server performs

all processing

Web Server
Application Server
Database Server

Server does too much work. Weak Modularity.

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 21

Three-Tier Architecture

TIER 1:
CLIENT

TIER 2:
SERVER

TIER 3:
BACKEND Application server

offloads processing
to tier 3

Web Server +
Application Server

Using 2 computers instead of 1 can result in a huge
increase in simultaneous clients.
Depends on % of CPU time spent on database access.
While DB server waits on DB, Web server is busy!

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 22

Getting to ‘Giant Scale’
• Only real option is cluster computing

Optional Backplane:

System-wide network
for intra-server
traffic:
Query redirect,
coherence traffic for
store, updates, …

From: Brewer Lessons from Giant-Scale Services

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 23

Assumptions
• Service provider has limited control

– Over clients, network
• Queries drive system

– HTTP Get
– FTP
– RPC

• Read Mostly
– Even at Amazon, browsing >> purchases

From: Brewer Lessons from Giant-Scale Services 4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 24

Cluster Computing

Free BSD
PCs

1B/day>5000Web email

PC-based25M/day>300Geocities

2 CPU
Sun wkstns

80M/day>1000Inktomi
Search Eng

4 CPU
DEC 4100s

10B/day>1000AOL Web
Cache

Service Nodes Queries Node Types

From: Brewer Lessons from Giant-Scale Services

2001 D
ata

5

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 25

Cluster Computing: Benefits
• Absolute Scalability

– Large % of earth population may use service!
• Incremental Scalability

– Can add / replace nodes as needed
– Nodes ~5x faster / 3 year depreciation time
– Cap ex $$ vs. cost of rack space / air cond

• Cost & Performance
– But no alternative for scale; hardware cost << ops

• Independent Components
– Independent faults help reliability

From: Brewer Lessons from Giant-Scale Services 4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 26

Load Management
• Round-Robin DNS

– Problem:
• Layer 4 switch

– Understand TCP, port numbers
• Layer 7 (application layer) switch

– Understand HTTP; Parse URLs at wire speed!
– Use in pairs (automatic failover)

• Custom front-ends
– Service-specific layer 7 routers in software

• Smart client end-to-end
– Hard for WWW in general. Used in DNS, Cell roaming

doesn’t hide failed nodes

From: Brewer Lessons from Giant-Scale Services

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 27

Case Studies

Simple Web Farm Search Engine Cluster

Inktomi (2001) Supports programs (not users)
Persistent data is partitioned across servers:
⇑ capacity, but ⇓ data loss if server fails

Layer 4 switches

From: Brewer Lessons from Giant-Scale Services 4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 28

High Availability
• Essential Objective
• Phone network, railways, water system
• Challenges

– Component failures
– Constantly evolving features
– Unpredictable growth

From: Brewer Lessons from Giant-Scale Services

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 29

Typical Cluster
• Extreme symmetry
• Internal disks
• No monitors
• No visible cables
• No people!

• Offsite management
• Contracts limit

∆ Power
∆ Temperature

From: Brewer Lessons from Giant-Scale Services 4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 30

Availability Metrics
• Traditionally: Uptime

– Uptime = (MTBF – MTTR)/MTBF
• Phone system ~ “Four or Five Nines”

– Four nines means 99.99% reliability
– I.e. less than 60 sec downtime / week

• How improve uptime?
– Measuring “MTBF = 1 week” requires > 1 week
– Measuring MTTR much easier
– New features reduce MTBF, but not MTTR
– Focus on MTTR; just best effort on MTBF

From: Brewer Lessons from Giant-Scale Services

6

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 31

Yield
• Queries completed / queries offered

– Numerically similar to uptime, but
– Better match to user experience
– (Peak times are much more important)

From: Brewer Lessons from Giant-Scale Services

Harvest
• Data available / complete data

– Fraction of services available
• E.g. Percentage of index queried for Google
• Ebay seller profiles down, but rest of site ok

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 32

Architecture
• What do faults impact? Yield? Harvest?
• Replicated systems

Faults reduced capacity (hence, yield @ high util
• Partitioned systems

Faults reduced harvest
Capacity (queries / sec) unchanged

• DQ Principle ∃ physical bottleneck
Data/Query × Queries/Sec = Constant

From: Brewer Lessons from Giant-Scale Services

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 33

Using DQ Values
• Measurable, Tunable
• Absolute Value Irrelevant

– Relative value / changes = predictable!

• Methodology
1. Define DQ value for service
2. Target workload & load generator
3. Measure for hardware × software × DB size

Linearity: small cluster (4 nodes) predict perf for 100
4. Plan: capacity/traffic; faults; replic/part;

From: Brewer Lessons from Giant-Scale Services 4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 34

Graceful Degradation
• Too expensive to avoid saturation
• Peak/average ratio

– 1.6x - 6x or more
– Ticketmaster: 10x capacity for Phantom Menace

• Not enough…

• Dependent faults (temperature, power)
– Overall DQ drops way down

• Cutting harvest by 2 doubles capacity…

From: Brewer Lessons from Giant-Scale Services

4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 35

Admission Control (AC) Techniques
• Cost-Based AC

– Denying an expensive query allows 2 cheap ones
– Inktomi

• Priority-Based (Value-Based) AC
– Stock trades vs. quotes
– Datek

• Reduced Data Freshness

From: Brewer Lessons from Giant-Scale Services 4/1/2005 8:43 AM © Daniel S. Weld 2000-2005 36

Managing Evolution

From: Brewer Lessons from Giant-Scale Services

• Traditional Wisdom
– “High availability = minimal change”

• Internet: continuous growth, ⇑ features
– Imperfect software (memory leaks, intermit bugs

• Acceptable quality
– Target MTBF; low MTTR; no cascading failures
– Mainentance & upgrades = controlled failures

