
The Web
Servers + Crawlers

Outline

• HTTP
• Crawling
• Server Architecture

Connecting on the WWW

Internet

What happens when you click?
• Suppose

– You are at www.yahoo.com/index.html
– You click on www.grippy.org/mattmarg/

• Browser uses DNS => IP addr for www.grippy.org
• Opens TCP connection to that address
• Sends HTTP request:

Get /mattmarg/ HTTP/1.0
User-Agent: Mozilla/2.0 (Macintosh; I; PPC)
Accept: text/html; */*
Cookie: name = value
Referer: http://www.yahoo.com/index.html
Host: www.grippy.org
Expires: …
If-modified-since: ...

Request

Request
Headers

HTTP Response

• One click => several responses

• HTTP1.0: new TCP connection for each elt/page
• HTTP1.1: KeepAlive - several requests/connection

HTTP/1.0 200 Found
Date: Mon, 10 Feb 1997 23:48:22 GMT
Server: Apache/1.1.1 HotWired/1.0
Content-type: text/html
Last-Modified: Tues, 11 Feb 1999 22:45:55 GMT

Image/jpeg, ...

Status

Response Status Lines

• 1xx Informational
• 2xx Success

– 200 Ok
• 3xx Redirection

– 302 Moved Temporarily
• 4xx Client Error

– 404 Not Found
• 5xx Server Error

HTTP Methods
• GET

– Bring back a page
• HEAD

– Like GET but just return headers
• POST

– Used to send data to server to be processed (e.g. CGI)
– Different from GET:

• A block of data is sent with the request, in the body,
usually with extra headers like Content-Type: and
Content-Length:

• Request URL is not a resource to retrieve;
it's a program to handle the data being sent

• HTTP response is normally program output,
not a static file.

• PUT, DELETE, ...

Logging Web Activity
• Most servers support “common logfile format” or “extended

logfile format”
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326

• Apache lets you customize format
• Every HTTP event is recorded

– Page requested
– Remote host
– Browser type
– Referring page
– Time of day

• Applications of data-mining logfiles ??

Cookies

• Small piece of info
– Sent by server as part of response header
– Stored on disk by browser; returned in request header
– May have expiration date (deleted from disk)

• Associated with a specific domain & directory
– Only given to site where originally made
– Many sites have multiple cookies
– Some have multiple cookies per page!

• Most Data stored as name=value pairs
• See

– C:\Program Files\Netscape\Users\default\cookies.txt
– C:\WINDOWS\Cookies

HTTPS

• Secure connections
• Encryption: SSL/TLS
• Fairly straightforward:

– Agree on crypto protocol
– Exchange keys
– Create a shared key
– Use shared key to encrypt data

• Certificates

CRAWLERS…

Standard Web Search Engine Architecture

crawl the
web

create an
inverted

index

store documents,
check for duplicates,

extract links

inverted
index

DocIds

Slide adapted from Marti Hearst / UC Berkeley]

Search
engine
servers

user
query

show results
To user

Your Project Architecture?

crawl the
web

store documents,
check for duplicates,

extract links

Relational
DB

DocIds

Slide adapted from Marti Hearst / UC Berkeley]

Front end

user
query

show results
To user

Classify?

Extract

Your Project Architecture?

crawl the
web

store documents,
check for duplicates,

extract links

DocIds

Standard Crawler

Open-Source Crawlers
• GNU Wget

– Utility for downloading files from the Web.
– Fine if you just need to fetch files from 2-3 sites.

• Heritix
– Open-source, extensible, Web-scale crawler
– Easy to get running.
– Web-based UI

• Nutch
– Featureful, industrial strength, Web search package.
– Includes Lucene information retrieval part

• TF/IDF and other document ranking
• Optimized, inverted-index data store

– You get complete control thru easy programming.

4/28/2009 4:57 PM

How Inverted Files are Created

Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

Search Engine Architecture
• Crawler (Spider)

– Searches the web to find pages. Follows hyperlinks.
Never stops

• Indexer
– Produces data structures for fast searching of all

words in the pages
• Retriever

– Query interface
– Database lookup to find hits

• 300 million documents
• 300 GB RAM, terabytes of disk

– Ranking, summaries
• Front End

4/28/2009 4:57 PM 18

Thinking about Efficiency
• Clock cycle: 2 GHz

– Typically completes 2 instructions / cycle
• ~10 cycles / instruction, but pipelining & parallel execution

– Thus: 4 billion instructions / sec
• Disk access: 1-10ms

– Depends on seek distance, published average is 5ms
– Thus perform 200 seeks / sec
– (And we are ignoring rotation and transfer times)

• Disk is 20 Million times slower !!!

• Store index in Oracle database?
• Store index using files and unix filesystem?

Spiders = Crawlers

• 1000s of spiders
• Various purposes:

– Search engines
– Digital rights management
– Advertising
– Spam
– Link checking – site validation

Spiders (Crawlers, Bots)
• Queue := initial page URL0
• Do forever

– Dequeue URL
– Fetch P
– Parse P for more URLs; add them to queue
– Pass P to (specialized?) indexing program

• Issues…
– Which page to look at next?

• keywords, recency, focus, ???
– Avoid overloading a site
– How deep within a site to go?
– How frequently to visit pages?
– Traps!

Crawling Issues
• Storage efficiency
• Search strategy

– Where to start
– Link ordering
– Circularities
– Duplicates
– Checking for changes

• Politeness
– Forbidden zones: robots.txt
– CGI & scripts
– Load on remote servers
– Bandwidth (download what need)

• Parsing pages for links
• Scalability
• Malicious servers: SEOs

Robot Exclusion

• Person may not want certain pages indexed.
• Crawlers should obey Robot Exclusion Protocol.

– But some don’t
• Look for file robots.txt at highest directory level

– If domain is www.ecom.cmu.edu, robots.txt goes in
www.ecom.cmu.edu/robots.txt

• Specific document can be shielded from a crawler
by adding the line:
<META NAME="ROBOTS” CONTENT="NOINDEX">

Robots Exclusion Protocol

• Format of robots.txt
– Two fields. User-agent to specify a robot
– Disallow to tell the agent what to ignore

• To exclude all robots from a server:
User-agent: *
Disallow: /

• To exclude one robot from two directories:
User-agent: WebCrawler
Disallow: /news/
Disallow: /tmp/

• View the robots.txt specification at
http://info.webcrawler.com/mak/projects/robots/norobots.html

Outgoing Links?

• Parse HTML…
• Looking for…what?

anns html foos
Bar baz hhh www
A href = www.cs
Frame font zzz
,li> bar bbb anns
html foos
Bar baz hhh www
A href = ffff zcfg
www.cs bbbbb z
Frame font zzz
,li> bar bbb ?

Which tags / attributes hold URLs?

Anchor tag: …

Option tag: <option value=“URL”…> … </option>

Map: <area href=“URL” …>

Frame: <frame src=“URL” …>

Link to an image:

Relative path vs. absolute path: <base href= …>

Bonus problem: Javascript

In our favor: Search Engine Optimization

Web Crawling Strategy

• Starting location(s)
• Traversal order

– Depth first (LIFO)
– Breadth first (FIFO)
– Or ???

• Politeness
• Cycles?
• Coverage?

Structure of Mercator Spider

1. Remove URL from queue
2. Simulate network protocols & REP
3. Read w/ RewindInputStream (RIS)
4. Has document been seen before?

(checksums and fingerprints)

5. Extract links
6. Download new URL?
7. Has URL been seen before?
8. Add URL to frontier

Document fingerprints

URL Frontier (priority queue)

• Most crawlers do breadth-first search from seeds.
• Politeness constraint: don’t hammer servers!

– Obvious implementation: “live host table”
– Will it fit in memory?
– Is this efficient?

• Mercator’s politeness:
– One FIFO subqueue per thread.
– Choose subqueue by hashing host’s name.
– Dequeue first URL whose host has NO outstanding requests.

Fetching Pages
• Need to support http, ftp, gopher,

– Extensible!
• Need to fetch multiple pages at once.
• Need to cache as much as possible

– DNS
– robots.txt
– Documents themselves (for later processing)

• Need to be defensive!
– Need to time out http connections.
– Watch for “crawler traps” (e.g., infinite URL names.)
– See section 5 of Mercator paper.
– Use URL filter module
– Checkpointing!

Duplicate Detection

• URL-seen test: has URL been seen before?
– To save space, store a hash

• Content-seen test: different URL, same doc.
– Supress link extraction from mirrored pages.

• What to save for each doc?
– 64 bit “document fingerprint”
– Minimize number of disk reads upon retrieval.

Nutch: A simple architecture

• Seed set
• Crawl
• Remove duplicates
• Extract URLs (minus those we’ve been to)

– new frontier
• Crawl again
• Can do this with Map/Reduce architecture

– How?

Mercator Statistics

PAGE TYPE PERCENT
text/html 69.2%
image/gif 17.9%
image/jpeg 8.1%
text/plain 1.5
pdf 0.9%
audio 0.4%
zip 0.4%
postscript 0.3%
other 1.4%

Exponentially increasing size

Outdated

Advanced Crawling Issues

• Limited resources
– Fetch most important pages first

• Topic specific search engines
– Only care about pages which are relevant to topic

“Focused crawling”

• Minimize stale pages
– Efficient re-fetch to keep index timely
– How track the rate of change for pages?

Focused Crawling
• Priority queue instead of FIFO.

•

• How to determine priority?
– Similarity of page to driving query

• Use traditional IR measures
• Exploration / exploitation problem

– Backlink
• How many links point to this page?

– PageRank (Google)
• Some links to this page count more than others

– Forward link of a page
– Location Heuristics

• E.g., Is site in .edu?
• E.g., Does URL contain ‘home’ in it?

– Linear combination of above

Server Architecture

Connecting on the WWW

Internet

Client-Side View

Web SitesWeb Sites

Internet

Content rendering engine
Tags, positioning, movement

Scripting language interpreter
Document object model
Events
Programming language itself

Link to custom Java VM

Security access mechanisms

Plugin architecture + plugins

Server-Side View
Database-driven content
Lots of Users

Scalability
Load balancing

Often implemented with
cluster of PCs

24x7 Reliability
Transparent upgrades

ClientsClients

Internet

Trade-offs in Client/Server Arch.

• Compute on clients?
– Complexity: Many different browsers

• {Firefox, IE, Safari, …} × Version × OS

• Compute on servers?
– Peak load, reliability, capital investment.
+ Access anywhere, anytime, any device
+ Groupware support (shared calendar, …)
+ Lower overall cost (utilization & debugging)
+ Simpler to update service

Dynamic Content

• We want to do more via an http request
– E.g. we’d like to invoke code to run on the server.

• Initial solution: Common Gateway Interface
(CGI) programs.

• Example: web page contains form that needs
to be processed on server.

CGI Code

• CGI scripts can be in any language.
• A new process is started (and terminated)

with each script invocation (overhead!).
• Improvement I:

– Run some code on the client’s machine
– E.g., catch missing fields in the form.

• Improvement II:
– Server APIs (but these are server-specific).

Java Servlets

• Servlets : applets that run on the server.
– Java VM stays, servlets run as threads.

• Accept data from client + perform computation
• Platform-independent alternative to CGI.
• Can handle multiple requests concurrently

– Synchronize requests - use for online conferencing
• Can forward requests to other servers

– Use for load balancing

Java Server Pages (JSP)
Active Server Pages (ASP)

• Allows mixing static HTML w/ dynamically generated content
• JSP is more convenient than servlets for the above purpose
• More recently PHP (and Ruby on Rails, sort of) fall in this

category
<html>

<head>
<title>Example #3</title>
</head>
<? print(Date("m/j/y")); ?>

<body>
</body>
</html>

AJAX

• Getting the browser to behave like your
applications (caveat: Asynchronous)

• Client Rendering library (Javascript)
– Widgets

• Talks to Server (XML)
• How do we keep state?
• Over the wire protocol: SOAP/XML-RPC/etc.

Connecting on the WWW

Internet

Tiered Architectures

1-tier = dumb terminal smart server.
2-tier = client/server.
3-tier = client/application server/database.

Why decompose the server?

Two-Tier Architecture
TIER 1:
CLIENT

TIER 2:
SERVER

Server performs
all processing

Web Server
Application Server
Database Server

Server does too much work. Weak Modularity.

Three-Tier Architecture

TIER 1:
CLIENT

TIER 2:
SERVER

TIER 3:
BACKEND

Application server
offloads processing

to tier 3

Web Server +
Application Server

Using 2 computers instead of 1 can result in a huge increase in simultaneous
clients.
Depends on % of CPU time spent on database access.
While DB server waits on DB, Web server is busy!

Getting to ‘Giant Scale’
• Only real option is cluster computing

Optional Backplane:

System-wide network for
intra-server traffic:
Query redirect,
coherence traffic for
store, updates, …

From: Brewer Lessons from Giant-Scale Services

Update Notes

• Needs a refresh…

• Much of this is common sense these days

• Arch of Amazon EC2….

Assumptions

• Service provider has limited control
– Over clients, network

• Queries drive system
– HTTP Get
– FTP
– RPC

• Read Mostly
– Even at Amazon, browsing >> purchases

From: Brewer Lessons from Giant-Scale Services

Cluster Computing: Benefits

• Absolute Scalability
– Large % of earth population may use service!

• Incremental Scalability
– Can add / replace nodes as needed
– Nodes ~5x faster / 3 year depreciation time
– Cap ex $$ vs. cost of rack space / air cond

• Cost & Performance
– But no alternative for scale; hardware cost << ops

• Independent Components
– Independent faults help reliability

From: Brewer Lessons from Giant-Scale Services

Load Management
• Round-Robin DNS

– Problem:
• Layer 4 switch

– Understand TCP, port numbers
• Layer 7 (application layer) switch

– Understand HTTP; Parse URLs at wire speed!
– Use in pairs (automatic failover)

• Custom front-ends
– Service-specific layer 7 routers in software

• Smart client end-to-end
– Hard for WWW in general. Used in DNS, Cell roaming

doesn’t hide failed nodes

Case Studies

Simple Web Farm Search Engine Cluster

Inktomi (2001) Supports programs (not users) Persistent data
is partitioned across servers:

⇑ capacity, but ⇓ data loss if server fails

Layer 4 switches

From: Brewer Lessons from Giant-Scale Services

High Availability

• Essential Objective
• Phone network, railways, water system
• Challenges

– Component failures
– Constantly evolving features
– Unpredictable growth

From: Brewer Lessons from Giant-Scale Services

Typical Cluster Typical Cluster
• Extreme symmetry
• Internal disks
• No monitors
• No visible cables
• No people!

• Offsite management
• Contracts limit

∆ Power
∆ Temperature

From: Brewer Lessons from Giant-Scale Services
Images from Zillow talk

Availability Metrics

• Traditionally: Uptime
– Uptime = (MTBF – MTTR)/MTBF

• Phone system ~ “Four or Five Nines”
– Four nines means 99.99% reliability
– I.e. less than 60 sec downtime / week

• How improve uptime?
– Measuring “MTBF = 1 week” requires > 1 week
– Measuring MTTR much easier
– New features reduce MTBF, but not MTTR
– Focus on MTTR; just best effort on MTBF

From: Brewer Lessons from Giant-Scale Services

Yield
• Queries completed / queries offered

– Numerically similar to uptime, but
– Better match to user experience
– (Peak times are much more important)

Harvest
• Data available / complete data

– Fraction of services available
• E.g. Percentage of index queried for Google
• Ebay seller profiles down, but rest of site ok

Architecture
• What do faults impact? Yield? Harvest?
• Replicated systems

Faults reduced capacity (hence, yield @ high util)
• Partitioned systems

Faults reduced harvest
Capacity (queries / sec) unchanged

• DQ Principle ∃ physical bottleneck
Data/Query × Queries/Sec = Constant

From: Brewer Lessons from Giant-Scale Services

Using DQ Values
• Measurable, Tunable
• Absolute Value Irrelevant

– Relative value / changes = predictable!

• Methodology
1. Define DQ value for service
2. Target workload & load generator
3. Measure for hardware × software × DB size

Linearity: small cluster (4 nodes) predict perf for 100
4. Plan: capacity/traffic; faults; replic/part;

From: Brewer Lessons from Giant-Scale Services

Graceful Degradation

• Too expensive to avoid saturation
• Peak/average ratio

– 1.6x - 6x or more
– Moviefone: 10x capacity for Phantom Menace

• Not enough…

• Dependent faults (temperature, power)
– Overall DQ drops way down

• Cutting harvest by 2 doubles capacity…

From: Brewer Lessons from Giant-Scale Services

Admission Control (AC) Techniques

• Cost-Based AC
– Denying an expensive query allows 2 cheap ones
– Inktomi

• Priority-Based (Value-Based) AC
– Stock trades vs. quotes
– Datek

• Reduced Data Freshness

From: Brewer Lessons from Giant-Scale Services

Managing Evolution

• Traditional Wisdom
– “High availability = minimal change”

• Internet: continuous growth, ⇑ features
– Imperfect software (memory leaks, intermit bugs

• Acceptable quality
– Target MTBF; low MTTR; no cascading failures
– Maintenance & upgrades = controlled failures

