The Web

Servers + Crawlers

Outline

« HTTP
» Crawling
* Server Architecture

Connecting on the WWW

Web Browser Web Server

Client 0S i Server 0S

What happens when you click?

Suppose

—You are at www.yahoo.com/index.html
—You click on www.grippy.org/mattmarg/
Browser uses DNS => IP addr for www.grippy.org
Opens TCP connection to that address

Sends HTTP request:

/ Request
Get /mattmarg/ HTTP/1.0
User-Agent: Mozilla/2.0 (Macintosh; I; PPC) ‘
Accept: text/html; */* __ Request
Cookie: name = value Headers

Referer: http://www.yahoo.com/index.html |
Host: www.grippy.org |
Expires: ... |
If-modified-since: ... |

|

HTTP Response

HTTP/1.0 200 Found
Date: Mon, 10 Feb 1997 23:48:22 GMT
Server: Apache/1.1.1 HotWired/1.0

Content-type: text/html
Last-Modified: Tues, 11 Feb 1999 22:45: X
Image/jpeg, ...

* One click => several responses

e HTTP1.0: new TCP connection for each elt/page
¢ HTTPL1.1: KeepAlive - several requests/connection

Status

Response Status Lines

1xx Informational
2xX Success

—-200 Ok

3xx Redirection
—302 Moved Temporarily
4xx Client Error
—404 Not Found

Bxx Server Error

HTTP Methods

« GET
— Bring back a page
* HEAD

— Like GET but just return headers
« POST

— Used to send data to server to be processed (e.g. CGl)
— Different from GET:

« A block of data is sent with the request, in the body,
usually with extra headers like Content-Type: and
Content-Length:

* Request URL is not a resource to retrieve;

it's a program to handle the data being sent
* HTTP response is normally program output,
not a static file.
¢« PUT, DELETE, ...

Cookies

« Small piece of info
— Sent by server as part of response header
— Stored on disk by browser; returned in request header
— May have expiration date (deleted from disk)
« Associated with a specific domain & directory
— Only given to site where originally made
— Many sites have multiple cookies
— Some have multiple cookies per page!
* Most Data stored as name=value pairs
e See

— C:\WINDOWS\Cookies

— C:\Program Files\Netscape\Users\default\cookies.txt

Logging Web Activity

Most servers support “common logfile format” or “extended
logfile format”

127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326

0

Apache lets you customize format
Every HTTP event is recorded

— Page requested

— Remote host

— Browser type

— Referring page

— Time of day

« Applications of data-mining logfiles ??

.

HTTPS

e Secure connections
Encryption: SSL/TLS

Fairly straightforward:

— Agree on crypto protocol

— Exchange keys

— Create a shared key

— Use shared key to encrypt data
* Certificates

CRAWLERS...

Standard Web Search Engine Architecture

store documents,
check for duplicates, -
extract links

iy

|

create an
inverted
index

Search
engine
servers

inverted
index

show results
To user
/

Your Project Architecture?

store documents,
check for dupllcates -
extract links

Your Project Architecture?

store documents,
check for dupllcates -
I

extract links

—/
~_ —

Standard Crawler

Open-Source Crawlers

+ 6NU Wget

- Utility for downloading files from the Web.
- Fine if you just need to fetch files from 2-3 sites.

+ Heritix

- Open-source, extensible, Web-scale crawler
- Easy to get running.
- Web-based UI

* Nutfch
- Featureful, industrial strength, Web search package.

- Includes Lucene information retrieval part
+ TF/IDF and other document ranking
+ Optimized, inverted-index data store
- You get complete control thru easy programming.

How Inverted Files are Created

Repositor [REIRTELRS

P y Index

ptrs
docs @

Sorted

Inverted <=
File V Index

List

Search Engine Architecture

Crawler (Spider)

— Searches the web to find pages. Follows hyperlinks.
Never stops

Indexer

— Produces data structures for fast searching of all
words in the pages

Retriever

— Query interface

— Database lookup to find hits
« 300 million documents
* 300 GB RAM, terabytes of disk

— Ranking, summaries

Front End

Thinking about Efficiency

+ Clock cycle: 2 GHz

- Typically completes 2 instructions / cycle
+ ~10 cycles / instruction, but pipelining & parallel execution

- Thus: 4 billion instructions / sec
- Disk access: 1-10ms
- Depends on seek distance, published average is 5ms
- Thus perform 200 seeks / sec
- (And we are ignoring rotation and transfer times)

« Disk is 20 Million times slower lll

+ Store index in Oracle database?
+ Store index using files and unix filesystem?

4/28/2009 4:57 PM 18

Spiders = Crawlers

» 1000s of spiders
 Various purposes:
— Search engines
— Digital rights management
— Advertising
— Spam
— Link checking — site validation

Crawling Issues

» Storage efficiency
e Search strategy
— Where to start
— Link ordering
— Circularities
— Duplicates
— Checking for changes
» Politeness
— Forbidden zones: robots.txt
— CGl & scripts
— Load on remote servers
— Bandwidth (download what need)
» Parsing pages for links
» Scalability
» Malicious servers: SEOs

Robots Exclusion Protocol

e Format of robots.txt
— Two fields. User-agent to specify a robot
— Disallow to tell the agent what to ignore

To exclude all robots from a server:
User-agent: *
Disallow: /

* To exclude one robot from two directories:
User-agent: WebCrawler
Disallow: /news/
. Disallow: /tmp/ . .
¢ View the robots.txt specification at
http://info.webcrawler.com/mak/projects/robots/norobots.html

Spiders (Crawlers, Bots)

¢ Queue := initial page URL,
« Do forever
— Dequeue URL
— Fetch P
— Parse P for more URLSs; add them to queue
— Pass P to (specialized?) indexing program

e Issues...
— Which page to look at next?
 keywords, recency, focus, ???
— Avoid overloading a site
— How deep within a site to go?
— How frequently to visit pages?
— Traps!

Robot Exclusion

¢ Person may not want certain pages indexed.

¢ Crawlers should obey Robot Exclusion Protocol.
— But some don't

« Look for file robots.txt at highest directory level

— If domain is www.ecom.cmu.edu, robots.txt goes in
www.ecom.cmu.edu/robots.txt

¢ Specific document can be shielded from a crawler
by adding the line:
<META NAME="ROBOTS” CONTENT="NOINDEX">

Outgoing Links?

» Parse HTML...
 Looking for...what?

N

=
3 ?

Which tags / attributes hold URLs?

Anchor tag: ...

Option tag: <option value="URL"...> ... </option>
Map: <area href="URL" ...>

Frame: <frame src="URL" ...>

Link to an image:

Relative path vs. absolute path: <base href= ...>
Bonus problem: Javascript

In our favor: Search Engine Optimization

Web Crawling Strategy

Starting location(s)
e Traversal order

— Depth first (LIFO)
— Breadth first (FIFO)
- 0r???
Politeness
Cycles?
Coverage?

Structure of Mercator Spider

Marcaior

e o —
T by

Ee e = |

AmEImaE—

ENFAN NI

e - = —
i TAL Ooeue
- St Foes
I
=l (&3
Protocal Prccassng
[Hevn Wodkies

. Remove URL from queue

. Simulate network protocols & REP
. Read w/ RewindInputStream (RIS)
Has document been seen before?
(checksums and fingerprints)

. Extract links

. Download new URL?

. Has URL been seen before?
. Add URL to frontier

o ~No o,

URL Frontier (priority queue)

» Most crawlers do breadth-first search from seeds.
» Politeness constraint: don’t hammer servers!

— Obvious implementation: “live host table”

— Will it fit in memory?

— Is this efficient?
e Mercator’s politeness:

— One FIFO subqueue per thread.

— Choose subgueue by hashing host's name.

— Dequeue first URL whose host has NO outstanding requests.

Fetching Pages

Need to support http, ftp, gopher,

— Extensible!

Need to fetch multiple pages at once.
Need to cache as much as possible

— DNS

— robots.txt

— Documents themselves (for later processing)
Need to be defensive!

— Need to time out http connections.

— Watch for “crawler traps” (e.g., infinite URL names.)
— See section 5 of Mercator paper.

— Use URL filter module

— Checkpointing!

Duplicate Detection

« URL-seen test: has URL been seen before?
— To save space, store a hash

« Content-seen test: different URL, same doc.
— Supress link extraction from mirrored pages.

* What to save for each doc?
— 64 bit “document fingerprint”
— Minimize number of disk reads upon retrieval.

Nutch: A simple architecture

Seed set

Crawl

Remove duplicates

Extract URLs (minus those we've been to)
— new frontier

Crawl again

Can do this with Map/Reduce architecture
— How?

Mercator Statistics

o 1 & 4 8 16 ® s ws mE Sz IK K 4K SK TeK K SAK 120K 256K 512K
PAGE TYPE PERCENT Exponentially increasing size
text/html 69.2%

image/gif 17.9%

image/jpeg 8.1%

text/plain 15 _@d

pdf 0.9% \()

audio 0.4% ov

zip 0.4%

postscript 0.3%

other 1.4%

Advanced Crawling Issues

Limited resources

— Fetch most important pages first

Topic specific search engines

— Only care about pages which are relevant to topic

“Focused crawling”
Minimize stale pages

— Efficient re-fetch to keep index timely
— How track the rate of change for pages?

Focused Crawling
* Priority queue instead of FIFO.

¢ How to determine priority?
— Similarity of page to driving query
« Use traditional IR measures
« Exploration / exploitation problem
— Backlink
« How many links point to this page?
— PageRank (Google)
« Some links to this page count more than others
— Forward link of a page
— Location Heuristics
« E.g., Is site in .edu?
« E.g., Does URL contain ‘home’ in it?
— Linear combination of above

Server Architecture

Connecting on the WWW

Web Browser Web Server

Client0S ’ Server 0S

Client-Side View

Content rendering engine
Tags, positioning, movement

Scripting language interpreter
Document object model
Events
Programming language itself

Internet

Link to custom Java VM

N T~

Security access mechanisms

Plugin architecture + plugins Web Sites

Server-Side View

Database-driven content
Lots of Users

Y,

B Scalability
Internet

\>

§

LODT

Load balancing

Often implemented with
cluster of PCs

24x7 Reliability
Transparent upgrades

i

Lo

Trade-offs in Client/Server Arch.

» Compute on clients?
— Complexity: Many different browsers

« {Firefox, IE, Safari, ...} x Version x OS
Compute on servers?
— Peak load, reliability, capital investment.
+ Access anywhere, anytime, any device
+ Groupware support (shared calendar, ...)
+ Lower overall cost (utilization & debugging)
+ Simpler to update service

Dynamic Content

* We want to do more via an http request
— E.g. we'd like to invoke code to run on the server.

« |nitial solution: Common Gateway Interface
(CGI) programs.

« Example: web page contains form that needs
to be processed on server.

CGI Code

» CGlI scripts can be in any language.
* A new process is started (and terminated)
with each script invocation (overhead!).
e Improvement I:
— Run some code on the client's machine
— E.g., catch missing fields in the form.
e Improvement II:
— Server APIs (but these are server-specific).

Java Servlets

Servlets : applets that run on the server.

— Java VM stays, servlets run as threads.

Accept data from client + perform computation
Platform-independent alternative to CGlI.

Can handle multiple requests concurrently

— Synchronize requests - use for online conferencing
Can forward requests to other servers

— Use for load balancing

Java Server Pages (JSP)
Active Server Pages (ASP)

« Allows mixing static HTML w/ dynamically generated content
« JSP is more convenient than servlets for the above purpose
« More recently PHP (and Ruby on Rails, sort of) fall in this

category
<html>

<head>
<title>Example #3</title>
</head>
<? print(Date("m/jly")); ?>

<body>
</body>
</html>

AJAX

Getting the browser to behave like your
applications (caveat: /synchronous)

Client &> Rendering library (Javascript)

— Widgets

Talks to Server (ML)

« How do we keep state?

e Over the wire protocol: SOAP/XML-RPC/etc.

Connecting on the WWW

Web Browser Web Server

Web Server
Client OS
u Wiah Qanar
Web Server
Server OS

Tiered Architectures

1-tier = dumb terminal - smart server.
2-tier = client/server.

3-tier = client/application server/database.
Why decompose the server?

Two-Tier Architecture

\\\
: .
!:._ k
(' i
- ; ..-—..—-.
=mm= |
—_— Web Server

Clian Application Server Database
workstation Database Server

Three-Tier Architecture

Client Web Server + Database Datal
workstation Application Server Server

Getting to ‘Giant Scale’

* Only real option is cluster computing

Client

Client

Client

Optional Backplane:

System-wide network for

m intra-server traffic:
Query redirect,
coherence traffic for
— store, updates, ...
Persistent data store
Assumptions

 Service provider has limited control
— Over clients, network
* Queries drive system
—HTTP Get
—-FTP
—-RPC
» Read Mostly
— Even at Amazon, browsing >> purchases

Update Notes

* Needs a refresh...

* Much of this is common sense these days

« Arch of Amazon EC2....

Load Management

Round-Robin DNS

— Problem:

Layer 4 switch

— Understand TCP, port numbers

Layer 7 (application layer) switch

— Understand HTTP; Parse URLSs at wire speed!
— Use in pairs (automatic failover)
Custom front-ends

— Service-specific layer 7 routers in software
Smart client end-to-end

— Hard for WWW in general. Used in DNS, Cell roaming

Cluster Computing: Benefits

e Absolute Scalability
— Large % of earth population may use service!
¢ Incremental Scalability
— Can add / replace nodes as needed
— Nodes ~5x faster / 3 year depreciation time
— Cap ex $$ vs. cost of rack space / air cond
» Cost & Performance
— But no alternative for scale; hardware cost << ops
¢ Independent Components
— Independent faults help reliability

Case Studies

Progre

Clem "

Simple Web Farm Search Engine Cluster

Inktomi (2001) Supports programs (not users) Persistent data
is partitioned across servers:
1 capacity, but | data loss if server fails

From: Brewer Lessons from Giant-Scale Services

High Availability

» Essential Objective
» Phone network, railways, water system
e Challenges

— Component failures

— Constantly evolving features

— Unpredictable growth

From: Brewer Lessons from Giant-Scale Services

Availability Metrics

Typical Cluster

Extreme symmetry q"

Internal disks
No monitors

No visible cables
No people!

Offsite management
Contracts limit

A Power

A Temperature

From: Brewer Lessons from Giant-Scale Services
Images from Zillow talk

Yield
» Queries completed / queries offered
— Numerically similar to uptime, but
— Better match to user experience
— (Peak times are much more important)

Harvest

e Data available / complete data

— Fraction of services available
« E.g. Percentage of index queried for Google
« Ebay seller profiles down, but rest of site ok

Architecture

What do faults impact? Yield? Harvest?
Replicated systems

Faults = reduced capacity (hence, yield @ high util)
Partitioned systems

Faults > reduced harvest

Capacity (queries / sec) unchanged

DQ Principle 3 physical bottleneck
Data/Query x Queries/Sec = Constant

From: Brewer Lessons from Giant-Scale Services

Using DQ Values

* Measurable, Tunable
» Absolute Value Irrelevant
— Relative value / changes = predictable!

* Methodology
1. Define DQ value for service
Target workload & load generator
Measure for hardware x software x DB size
Linearity: small cluster (4 nodes) predict perf for 100
Plan: capacity/traffic; faults; replic/part;

w N

»

From: Brewer Lessons from Giant-Scale Services

Graceful Degradation

» Too expensive to avoid saturation
» Peak/average ratio
—1.6x - 6x or more

— Moviefone: 10x capacity for Phantom Menace
« Not enough...

» Dependent faults (temperature, power)
— Overall DQ drops way down

 Cutting harvest by 2 doubles capacity...

Admission Control (AC) Techniques

» Cost-Based AC

— Denying an expensive query allows 2 cheap ones
— Inktomi

* Priority-Based (Value-Based) AC

— Stock trades vs. quotes
— Datek

¢ Reduced Data Freshness

Managing Evolution

 Traditional Wisdom
— “High availability = minimal change”
¢ Internet: continuous growth, 1 features
— Imperfect software (memory leaks, intermit bugs
¢ Acceptable quality
— Target MTBF; low MTTR; no cascading failures
— Maintenance & upgrades = controlled failures

