Announcements

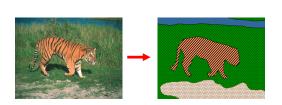
- · vote for Project 3 artifacts
- Project 4 (due next Wed night)
 - Questions?
 - Late day policy: everything must be turned in by next Friday

Image Segmentation

Today's Readings

- Shapiro, pp. 279-289
- http://www.dai.ed.ac.uk/HIPR2/morops.htm
 - Dilation, erosion, opening, closing

From images to objects



What Defines an Object?

- Subjective problem, but has been well-studied
- · Gestalt Laws seek to formalize this
 - proximity, similarity, continuation, closure, common fate
 - see $\underline{\text{notes}}$ by Steve Joordens, U. Toronto

Image Segmentation

We will consider different methods Already covered:

- Intelligent Scissors (contour-based)
- Hough transform (model-based)

This week:

- K-means clustering (color-based)
 - Discussed in Shapiro
- · Normalized Cuts (region-based)
 - Forsyth, chapter 16.5 (supplementary)

Image histograms

How many "orange" pixels are in this image?

- This type of question answered by looking at the histogram
- · A histogram counts the number of occurrences of each color
 - Given an image

 $F[x,y] \to RGB$

- The histogram is defined to be

$$H_F[c] = |\{(x, y) \mid F[x, y] = c\}|$$

- What is the dimension of the histogram of an RGB image?

What do histograms look like?

Photoshop demo

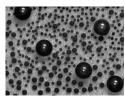
How Many Modes Are There?

• Easy to see, hard to compute

Histogram-based segmentation

Goal

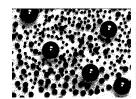
- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
 - photoshop demo

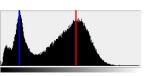


Histogram-based segmentation

Goa

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
 - photoshop demo



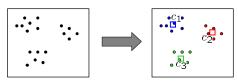


Here's what it looks like if we use two colors

Clustering

How to choose the representative colors?

· This is a clustering problem!



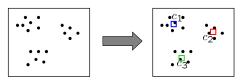
Objective

- · Each point should be as close as possible to a cluster center - Minimize sum squared distance of each point to closest center
 - $\sum_{\text{clusters } i}$ $\sum_{\text{points p in cluster } i} ||p - c_i||^2$

Break it down into subproblems

Suppose I tell you the cluster centers c_i

- Q: how to determine which points to associate with each ci?
- A: for each point p, choose closest c_i



Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
 A: choose c_i to be the mean of all points in the cluster

K-means clustering

K-means clustering algorithm

- 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
- 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_{i} . Put p into cluster i
- 3. Given points in each cluster, solve for c_i
- · Set c, to be the mean of points in cluster i
- 4. If c, have changed, repeat Step 2

Java demo: http://www.cs.mcgill.ca/~bonnef/project.html

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - does not always find the global minimum of objective function:

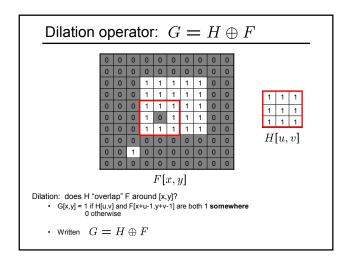
$$\sum_{\text{clusters } i} \quad \sum_{\text{points p in cluster } i} \|p - c_i\|^2$$

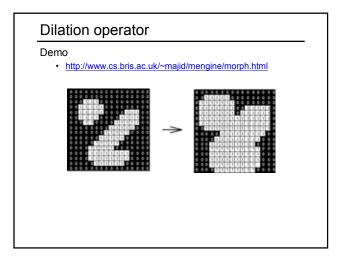
Cleaning up the result

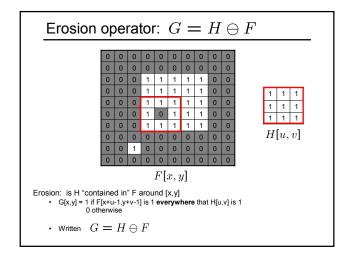
- · Histogram-based segmentation can produce messy regions
 - segments do not have to be connected
 - may contain holes

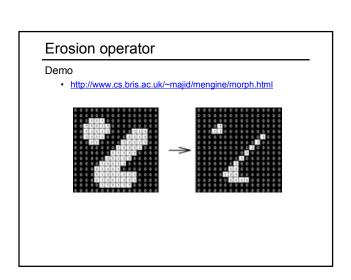
How can these be fixed?

photoshop demo









Nested dilations and erosions

What does this operation do?

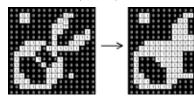
$$G = H \ominus (H \oplus F)$$

• this is called a **closing** operation

Nested dilations and erosions

What does this operation do?

$$G = H \ominus (H \oplus F)$$



- this is called a $\boldsymbol{\text{closing}}$ operation

Is this the same thing as the following?

$$G = H \oplus (H \ominus F)$$

Nested dilations and erosions

What does this operation do?

$$G = H \oplus (H \ominus F)$$

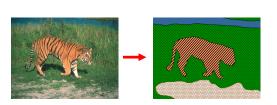
- this is called an **opening** operation
- http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions

Dilations, erosions, opening, and closing operations are known as **morphological operations**

• see http://www.dai.ed.ac.uk/HIPR2/morops.htm

How about doing this automatically?



Images as graphs

Fully-connected graph

- node for every pixel
 link between every pair of pixels, p,q
- $\cos c_{pq}$ for each link

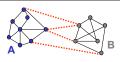
 - Cpq measures similarity
 similarity is inversely proportional to difference in color and position
 this is different than the costs for intelligent scissors

Segmentation by Graph Cuts

Break Graph into Segments

- · Delete links that cross between segments
- · Easiest to break links that have high cost
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph



Link Cut

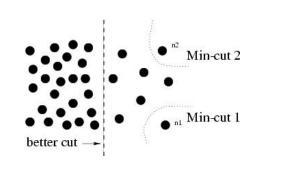
- · set of links whose removal makes a graph disconnected
- · cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

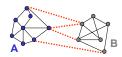
Find minimum cut

- gives you a segmentation
- gives you a segmentation
 fast algorithms exist for doing this

But min cut is not always the best cut...



Cuts in a graph



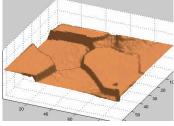
Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

• volume(A) = sum of costs of all edges that touch A

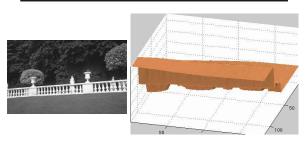
Interpretation as a Dynamical System



Treat the links as springs and shake the system

- · elasticity proportional to cost
- vibration "modes" correspond to segments

Interpretation as a Dynamical System



Treat the links as springs and shake the system

- elasticity proportional to cost
- · vibration "modes" correspond to segments

Color Image Segmentation

Normalize Cut in Matrix Form

W is the cost matrix : $\mathbf{W}(i, j) = c_{i,j}$;

D is the sum of costs from node i: $\mathbf{D}(i,i) = \sum_{j} \mathbf{W}(i,j)$; $\mathbf{D}(i,j) = 0$

Can write normalized cut as:

$$Ncut(A,B) = \frac{\mathbf{y}^{\mathsf{T}}(\mathbf{D} - \mathbf{W})\mathbf{y}}{\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y}}, \text{ with } \mathbf{y}_i \in \{1,-b\}, \mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{1} = 0.$$

- Solution given by "generalized" eigenvalue problem: $(D-W)y = \lambda Dy$ - Solved by converting to standard eigenvalue problem:

$$(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$$

$$\mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{W})\mathbf{D}^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z}, \quad where \ \mathbf{z} = \mathbf{D}^{\frac{1}{2}}\mathbf{y}$$

- optimal solution corresponds to second smallest eigenvector
- · for more details, see
 - J. Shi and J. Malik, Normalized Cuts and Image Segmentation, IEEE Conf. Computer Vision and Pattern Recognition(CVPR), 1997

 http://www.cs.washington.edu/education/courses/455/03wi/readings/Ncut.pdf

Summary

Things to take away from this lecture

- Image histogram
- · K-means clustering
- Morphological operations
 - dilation, erosion, closing, opening
- Normalized cuts