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cardinality of the sets of image and model points necessary in an
indexing system, while retaining the indexing speedup. The disadvan-
tage to this system is that not all correct matches between image
groups and model groups are indexed. Since a far higher fraction of
correct matches are indexed than of incorrect matches, probabilistic
indexing can be used to help discriminate between correct and incor-
rect hypotheses. These techniques have been applied to the alignment
method and found to speed up the recognition process by a consider-
able amount.

1G] (®)

Fig. 3. Recognition of a stapler: (a) The corners found in the image; (b) A
correctly indexed group and the corresponding model pose.

(@ ()

Fig. 4. Recognition in a more complicated scene: (a) The corners found in the
image; (b) Correctly indexed groups and the corresponding model poses.
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Color Constant Color Indexing

Brian V. Funt and Graham D. Finlayson

Abstraci—Objects can be recognized on the basis of their color alone
by color indexing, a technique developed by Swain and Ballard [15]
which involves matching color-space histograms. Color indexing fails,
however, when the incident illumination varies either spatially or spec-
trally. Although this limitation might be overcome by preprocessing with
a color constancy algorithm, we instead propose histogramming color
ratios. Since the ratios of color RGB triples from neighboring locations
are relatively insensitive to changes in the incident illumination, this
circumvents the need for color constancy preprocessing. Results of tests
with the new color-constant-color-indexing algorithm on synthetic and
real images show that it works very well even when the illumination
varies spatially in its intensity and color.

Index Terms—Color indexing, color constancy, retinex, object
recognition.

I. INTRODUCTION

Swain and Ballard [15] developed a very clever, simple scheme
that identifies objects entirely on the basis of color. Their method,
which they call color indexing, radically departs from traditional
object recognition strategies based on geometric properties. Color
indexing turns out to be remarkably robust in that variations such as a
change in orientation, a shift in viewing position, a change in the
scene background, partial occlusion, or even a radical change in
shape (e.g., a shirt tossed onto a chair two different ways), degrade
recognition only slightly.

On the other hand, Swain’s algorithm is very sensitive to the
lighting. Simple changes in the illumination’s intensity—let alone its
color—radically alter the algorithm’s results. Clearly, one solution to
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this problem is to preprocess the images with some sort of color con-
stancy algorithm [6], [11], [8], [7] in order to remove the effects of
varying illumination conditions and, in effect, normalize the images
to a standard illuminant. Swain, in fact, suggests using Novak et al.’s
[14] supervised color constancy approach in which a few patches of
known spectral reflectance are placed in the scene.

While preprocessing for color constancy could well work, it feels
unsatisfying in that color constancy appears to be a more difficult
problem than color-based object identification. Preprocessing for color
constancy destroys the overall elegance inherent in Swain’s method.
Simple color adjustment schemes, such as that of placing a known
white calibration patch in the scene, will not work well in general be-
cause illumination usually varies spatially both in intensity and spectral
composition due to shading, multiple sources, and interreflections.

In this paper, we extend Swain’s color indexing method to be il-
lumination independent, not by preprocessing for color constancy,
but rather by indexing on an illumination-invariant set of color de-
scriptors. Swain indexes directly on a color triple, we instead index
on the derivative (Laplacian or first directional derivatives) of the
logarithm of the colors, which in effect is the ratio of neighboring
colors. Since the illumination remains essentially constant locally,
ratioing neighboring colors removes the illumination component.

Anyone familiar with Land’s work will recognize that the roots of
this method lie in retinex theory [11]. Our goal here, though, is not
color constancy and we do not propose applying full retinex theory.
Extending Swain’s algorithm requires only illumination-independent
descriptors on which to index, it does not require the actual, correct
colors. The descriptors we propose, which are in essence the ratios of
the correct colors, can be generated much more easily than the correct
colors themselves.

We have tested our algorithm on databases of real and synthetic
images and compare the results with those of Swain’s algorithm. In
general, our new algorithm does slightly worse than Swain’s under
fixed illumination, but substantially better than Swain’s (his
fails completely) under illumination that varies both spectrally and
spatially.

II. SUMMARY OF SWAIN’S COLOR INDEXING

Intuitively, Swain’s color-indexing algorithm identifies an object
by comparing its colors to the colors of each object in a database.
Crucial to this working, however, is that the total area covered by
each color also be taken into account. The areas are computed and
compared by histogramming the images and intersecting the histo-
grams. Color histograms and histogram intersection form the back-
bone of Swain’s method.

A color histogram is three-dimensional and simply represents the
count of the number of pixels in an image having a particular RGB
value. Before histogramming, Swain converts from camera RGB
triples to an opponent-theory-based [2] color space with axes black-
white, red-green and blue-yellow. The space is coarsely partitioned
along the black-white axis so that histograms which, at 8 bits per
channel, potentially could have 256 bins use only 2,048 bins. Com-
puting color histograms requires time proportional to the number of
image pixels, but with special, though not elaborate, hardware Swain
reports computation times of 0.04 second.

Color histograms of images of every model object, segmented
from the image background, are precomputed and stored in a data-
base. Presented with an image of an unknown object, the color index-
ing algorithm computes its color histogram and intersects it with
every one of the stored histograms in order to find the one that
matches best. The intersection of histograms H, and H,, is defined as:
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. min{H, i, j, k), Hy (i, j, )}

iJ.k
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Intersection (or match) values are normalized by the number of
pixels in the model histogram, thus matches are between O and 1.
Histogram intersection only requires time proportional to the number
of histogram bins and so is very fast. More sophisticated correlation
measures could be used, but Swain’s results show that they may not
be necessary. Swain reports that the algorithm identifies the correct
model most of the time.

III. ILLUMINATION INDEPENDENCE

We will assume that the ratio of sensor responses across a color
boundary remains unaffected by changes in the incident illumination.
This assumption is fundamental to retinex theory and directly implied
by von Kries adaptation [16]. The assumption entails a model in
which the response of the kth sensor class is formed as the product of
scalar coefficients representing illumination and surface albedo rela-
tive to that class. For any location x on the surface with incident il-
lumination ¢}. and albedo r, we have the sensor response pj given
by

P =&rn €3

This coefficient model of sensor response does not hold in
general—in fact it is surprising that it holds at all—but it has a long
history and for our purposes it is very useful. The main problem with
it is that it depends upon the assumption that for surface reflectances
$1(A) and Sy(A), illumination E(A) and sensor response R(A) the fol-
lowing approximation holds:

[S(ARM)aA  [s,(A)E(A)R(A)dA
[S(MRA)AL [ S,(A)E(R)R(A)dA

3

This is clearly not true in general; however, one way to ensure that
the coefficient model holds is to use sensors of narrowband sensitiv-
ity. Under the coefficient model, the ratio of sensor responses from
two locations under the same illumination yields the ratio of surface
albedos:

i/ Pk =(’klek)/(’kzek)=rkl/rk2 4)

This ratio has little dependence on illumination other than that it
be the same at both locations, which it essentially will, for proximate
locations under slowly varying illumination.

Taking logarithms of both sides of (4) turns the ratjos into
differences

ln(p}()— ln(pi) = ln(r,(')—ln(rkz) é)

When these differences are taken between neighboring pixels in a
particular direction, they correspond to finite-difference differentia-
tion of the logarithm of the image. Hence, under the coefficient
model of sensor response, the derivative of the logarithm of the
image remains independent of the color and intensity of the incident
illumination.

As derivative operators, we have experimented with both the
Laplacian and a set of four directional first derivatives corresponding
to the directions to a pixel’s four immediate neighbors. Another natu-
ral choice would be the magnitude of the gradient; however, the
Laplacian (or Laplacian of the Gaussian so as to include some
smoothing) is simpler to compute, has a theoretical relationship to the
center-surround cells of the human visual system [12], and is in
keeping with Horn’s [9] lightness algorithm.

Applying the Laplacian to the logarithm of the three channels
yields a new 3-tuple for every pixel and it is these that are then histo-
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grammed. In the case of the set of four directional derivatives, all
four derivatives generate 3-tuples—four 3-tuples per pixel—that are
counted and included as part of the histogram.

Since we found that the choice between the Laplacian and the set
of four directional derivatives did not matter much, we will subse-
quently use “derivative” unqualified to mean either method. Intui-
tively, in histogramming these derivative 3-tuples, we are replacing
Swain’s measure of color area with a measure of color edge length. In
all three channels, the derivative will be nearly zero except near the
color edges where two regions of different color meet. All pixels
along that color edge will generate roughly the same 3-tuple and will
accumulate to the same histogram bin. The total accumulation in a
particular bin, therefore, represents a measure of the length of the
boundary between two specific colors. Note that there is no need to
identify the color boundaries explicitly, since it is the derivative taken
at all images points which is histogrammed.

Even though the RGB triple representing the color of the light re-
flected from the two regions changes as the incident illumination
changes, the ratio of the RGB triples from the two regions does not
change significantly. Since the derivatives of the logarithms of the
three RGB channels reflect the ratios of the RGBs from the neighboring
regions, the derivatives continue to map to the same histogram bins
even as the illumination is changed. Obviously, the illumination does
not affect the length of the boundary between regions. The histogram of
the derivative tuples, therefore, will be invariant to the illumination.

Those derivative tuples which are near zero indicate a little bit
about the shape of the object. The image of a uniform color, planar
surface under spatially-uniform illumination, for example, would
have, in theory, a precisely zero derivative. Wrinkling the same sur-
face, on the other hand, would lead to a wide variety of derivative
values near zero, but few at zero. Because there is no color change,
only a shading change, the derivatives in all three channels will be
identical (because in the logarithm of intensity, the surface albedo
introduces a constant which differentiation eliminates).

IV. THE ALGORITHM

First a database of histograms must be created. The ratio histo-
gram of each image is computed as follows:

1) Logarithm step
ix,y) & In(px,y) k=1..3
1) Differentiation convolution step (either 2a, 2b, or 2c)
2a) Laplacian
dlx,y) & Viix,y) k=1..3
2b) Laplacian of Gaussian

dix,y) & V3G » ifx,y) k=1.3
2¢) Four directional derivatives
dui%,y) & Vi, y) k=13, m=1.4
where m indexes direction.

3) Histogram step (either 3a) or 3b)
3a) Laplacian or Laplacian of Gaussian

dy(x,y) i
— Lif dz(x,y)= J
H(i, jk)=D) z=
) )

0 otherwise

3b) 4 directional derivatives
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dm,l(x’Y) i
& 1 if dy,(xy)= J

H{i, j, k) = z= m2
k=2 2 dy)

0 otherwise

Once a database of ratio (or derivative) histograms has been
compiled for a set of known objects, it can be used to recognize an
instance of one of these objects in a new image. The ratio histogram
of the new image is calculated and then intersected with each of the
model histograms in the database. Histogram intersection proceeds
according to (1), which is exactly as it was for Swain.

Steps 1) and 2) represent the only additional computation required
to obtain illumination independence. The logarithm in Step 1) can be
done by table lookup in hardware and the derivative operators of
step 2) can be implemented as convolution. For this application, the
derivative operators tequire only a relatively small support since the
intention is only to compare colors within small regions so as not to
violate the assumption of constant illumination.

A. Implementation Details

An implicit premise in Swain’s color histogram method is that
colors should appear with equal likelihood. A uniform distribution of
colors implies, however, a nonuniform distribution of ratios so for
ratio histograms the bin sizes need to be adjusted accordingly. For
example, suppose colors, in a single sensor class, are integers in the
interval [1, 3]. If all colors are equally likely the following ratios will
occur with equal probability:

111222333

Clearly, ratios close to 1 are more likely than ratios close to 3. This
simple illustration implies that the ratio histogram should sample
ratio space nonuniformly.

Assuming that colors are uniformly distributed, we can solve for
the probability distribution of ratios for a given sensor channel. Let
us denote the maximum ratio that can occur as R™, so we can as-
sume that sensor catches fall in the closed interval [1, R™ (this
could be forced by appropriate scaling). For two intensity values
A and B chosen uniformly and randomly from this interval, what is

. A .
the probability, Pr[max(%, %)< R], that the ratio of 3 (and its

B
reciprocal) is less than R? Rewriting as Pr(A<BR)- Pr(A < };), by

standard techniques we can solve for the cumulative probability dis-
tribution of the ratios:

max \2
(R )]

[(R™™)* +1-R~-
R ()

( Rmax _ 1)2

Experimentally R™ was found to be approximately 4.5. Substitut-
ing 4.5 for R™ in (6) gives the distribution graphed in Fig. 1. It is
readily apparent that ratios close to one appear with much greater
frequency than ratios close to 4.5.

Given the cumulative probability distribution for ratios, we can
calculate the optimal distribution of histogram bins based on the opt-

A B
Pr(max(—,—)< R)=
r(m, (B A) )
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Fig. 1. The cumulative probability distribution for ratios when all colors are
equally likely and the maximum ratio is 4.5. Bin boundries for the optimal
distribution are marked with “e” characters. Bin boundaries for the experi-
mental distribution are marked with “+” characters.

imality criterion that ratios should be distributed across the bins with
equal probability. By appealing to the information-theoretic notion of
entropy, it is straightforward to show that an equi-probability parti-
tioning maximizes the information conveyed by a histogram [4]. By
examining Fig. 1 it is clear that the optimal distribution will partition
ratio space finely close to 1 and sparsely close
to R™.

Let us assume that there are n bins per sensor channel, where the
ith bin is sensitive to ratios in the interval [x;;, x;] (xo = 1 and
x, = R™). We must find the x; which satisfy:

A ) eisl=1

Using (6) the problem of determining x; reduces to finding the roots
of the polynomial:

O]

max 2 .
___L__z_ (R'“‘”‘)2+1—xi—ﬁ—) -t ®)
(R™>-1) x; n

However the partition defined in (8) is appropriate if, and only if,
the ratio at a color edge is truly invariant to illumination change. Any
illumination-induced variance in ratios may cause migration across
bin boundaries. Ratio migration is most likely to occur when ratio
space is finely partitioned. Thus, where the optimal distribution
would be a fine partitioning, the competing demands of ratio migra-
tion require a coarser partitioning. Conversely, where the optimal
distribution samples coarsely, ratio migration is less likely to occur;
consequently ratio space can be sampled more finely. The actual
ratio-space partition used in the color constant color indexing ex-
periments is shown in Fig. 1. A more detailed discussion of the
problem of ratio migration is given in [4].

Histogram matches must also be normalized in a slightly different
way for ratio histograms than for Swain’s color histograms. Swain
normalizes by the number of pixels in the model histogram; whereas,
we normalize relative to the maximum number of the counts found in
the image and model histograms. We do not segment objects from the
background prior to calculating model histograms, so Swain’s nor-
malization can result in an image with a lot of color edges being

falsely matched to a model with fewer color edges, since by chance
some of the large number of histogram counts from the image may
match some of the limited number of counts from the model. Normal-
izing with respect to the model’s smaller histogram in effect says that
very few matches are expected and so overemphasizes the chance
matching. A similar problem would arise if intersections were nor-
malized by the count in image histograms. Normalizing on the maxi-
mum of the image and model histograms ensures that a good match
occurs only when the intersection is large and the two histograms are
of similar size.

V. TEST RESULTS

The color constant color indexing algorithm performs well on a
variety of real and synthetic images. Objects are correctly identified
despite substantial changes in the spectral power distribution of the
illuminant. Unsurprisingly, Swain’s algorithm performs poorly when
the illumination changes. It should be noted that in the tests of
Swain’s algorithm we use RGB histograms, not opponent-color his-
tograms (he tests both) and prior background segmentation is not
performed on the model images.

To evaluate color constant color indexing we first consider whether
or not ratios suffice for Swain’s original problem under controlled il-
lumination. Second, on synthetic images for which the surface reflec-
tances, illuminants, and camera parameters can be completely con-
trolled, we test how the two methods compare. Finally, we test both
methods on real images where the illumination is allowed to vary.

A. Tests of the Ratio Representation

Even if color ratios are independent of illumination, this says little
about ratios as a representation for color indexing. Are ratio histo-
grams sufficient to discriminate between a large number of objects?

To answer this question, we ran the color constant color indexing
algorithm on the database of images Swain used in his experiments.
The full database of 66 images is shown in color in [15] (Fig. 4,
p. 30). Swain’s algorithm imposes few restrictions on the objects
except that they be multicolored. A shirt thrown on the floor is a
typical example. Its position and orientation can change, its shape can
change, and even some occlusion can be tolerated, such as when the
shirt sleeve falls across the shirt. Two-dimensional position and ori-
entation have no effect on the histogram so they make no difference
to the matching. A change in shape that preserves the color areas will
also leave the histogram unchanged; however, occlusion will affect
the histogram and may reduce the match confidence. Swain’s algo-
rithm handles substantial changes in three-dimensional orientation by
storing several views of the object in the model database. Of course
for Swain’s algorithm the illumination conditions must be the same
for the object and the model. As well the size must remain roughly
the same, which means that the camera’s distance to the object must
be similar to what it was to the model.

We eliminated 11 of Swain’s 66 model images having saturated
responses, because ratios relative to saturated pixels cannot be ex-
pected to be constant. For our test, then, the model database contains
histograms of 55 images and a second set of 24 different images of
the same objects taken in different positions and orientations is
matched against this database. The 24 test objects are shown
(originals of course are color) in Fig. 2 and their corresponding cor-
rect matching models in Fig. 3.

Each algorithm’s match performance is assessed with reference to
three indicators: match rankings, percentile match, and match toler-
ance. The position of the correct match in the sorted list of match
values is called its rank, so an image is correctly identified if it has



526

Fig. 3. The 24 model objects corresponding to the test objects shown in Fig. 1
that were correctly identified by the algorithm. These same images are shown
in color in [14] (Fig. 4, p. 30).

rank 1. The match percentile for each image is defined as N-

where r is a rank and N is the number of models. Each image is also
matched with a certain tolerance relative to the next best matching
model. If the correct match has rank i then the match tolerance is
m; — m;_y, where m denotes match value. An algorithm that correctly
identifies images most of the time, but with high average tolerance,
may be preferable to one that correctly identifies images more often,
but with lower average tolerance.

Table I illustrates the match performance for four algorithms.
Swain’s, ours with the Laplacian of Gaussian operator (¢ = 1.0), ours
with the simple Laplacian operator, and ours with the first derivative
operators. Firstly, as Swain reports, color-indexing works well. The
second algorithm, color constant indexing with smoothing, shows
reasonable performance—19 of the 24 images have first place rank-
ings. However, match tolerance is much reduced and, more impor-
tantly, two of the images are very poorly matched—ranks of 18
and 27.

TABLEI
COMPARATIVE PERFORMANCE: SWAIN'S IMAGES

Indezing Algorithm Rank: 1 2 8 > 3| Av. Percentile | Av. Tolerance
Swain’s 23 2 0 0 0.999 0.1212
Laplacian of Gaussian (¢ = 1) 19 0 2 3 0.961 0.0613
Simple Laplacian Indexing 21 2 3 0 0.997 0.0986
1** derivative indexi 22 2 0 0 0.998 0.1023
Grey-level Indexing 13 1 2 8 0.958 0.0208

The third row of Table I gives the match statistics for a simple
3 x 3 Laplacian mask without Gaussian smoothing. Match perform-
ance is increased. Finally, the last row of Table I gives the match
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statistics for color constant color indexing using the set of four direc-
tional derivatives. Because the directional derivatives operate inde-
pendently, information from each of the four directions contributes to
the ratio histogram. Since the ratio histograms perform nearly as well
as Swain’s color area histograms, we conclude that ratios are a suffi-
ciently rich representation for color constant indexing.

The poorer performance of the Laplacian of Gaussian indexing
can in large part be attributed to the effects of too much smoothing.
Swain used reduced images of resolution 128 x 90, so the addition of
even a small amount of Gaussian smoothing means that the Laplacian
operator may straddle more than one edge at a time. For our higher
resolution images (detailed in the forthcoming sections), however,
Laplacian of Gaussian indexing performs comparably with indexing
using the other derivative operators.

The last row in Table I shows the performance of the 1st deriva-
tive indexing algorithm using only single-band (in this case the green
channel), grey-level images. While the recognition rates are certainly
not as high as when color is used, they are surprisingly good.

B. Tests on Synthetic Images

To the extent that changes in the spectral power distribution of the
illumination are modelled by a single scalar multiplication in each sen-
sor channel, the ratio histograms should be relatively illumination inde-
pendent. To evaluate the coefficient rule approximation (4) in color
ratio indexing, we constructed synthetic images using various measured
spectra. These images are free from noise, specularities, and other con-
founding processes that could confuse object identification. As such,
they represent a minimal world for object identification.

Surface reflectances were chosen from a set of 40 reflectance
spectra that included the Macbeth color checker spectra [13], ceramic
spectra [1], and four of the natural reflectances (#98, #106, #203,
#324) measured by Krinov [10]. Seven illuminants were used, from
reddest to bluest; these are CIE standard A, a 3,600K blackbody ra-
diator, D48, D55, D65, D75, D100. Fig. 4 shows the sensor response
functions derived from the Kodak Wratten filters #25 (red), #58
(green), and #47B (blue) by multiplying by the spectral sensitivity
function of our CCD camera. The response of sensor class k, Ri(4), to
an illumination E(A) striking a surface reflectance S(A) was calculated
as:

pi = [ B(A) S(2) R(2)dA ™

Thirty synthetic mondrian objects were generated; a mondriar
contains numerous, two dimensional rectangular patches of uniform
reflectance placed side by side. Each mondrian has the same overal
size but contains between four and ten (randomly selected) surface:
reflectances. If a mondrian has m patches, then these are distributecl
according to the formula: patches in x direction = [J; -l and patche:

in y direction= l'_m_] Patches are, as far as possible, of uniform
Jm

size. For example, the mondrian for the case of m = 7 has thre:

patches in the first row, three in the second, and one in the third.

For each illuminant, images of the 30 mondrians were generatec.
To separate the issue of brightness change from that of hue change in
the illumination, the illuminant spectra were normalized such thet
their squared area is one. Without loss of generality, the mondrians
imaged under DSS are used as the model set. Match results fcr
Swain’s algorithm and for color constant color indexing (using the
Laplacian of Gaussian index) are given in Table I1. Note the second
column displays the number of match failures. An algorithm fails to
identify an image if the intersection with the correct model is zero. . f
this is the case the match rank is undefined.
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As expected, Swain’s algorithm performs badly—155 of the 180
mondrians have a zero intersection with the correct model. Indeed,
color indexing performs so badly that it is not meaningful to discuss
average percentile match or average tolerance. The need for some
form of color constancy is readily apparent.

Color constant color indexing performs extremely well. All 180
mondrians are correctly identified and with high tolerances.

The poor performance of Swain’s color indexing is graphically ill

Camera Sensititivities

T T T T
«o 450 500 550 800 s

‘wavelongthinm)

Fig. 4. The camera response function of our CCD camera multiplied by the
Kodak Wratten filters numbers #25, #47B, and #58.

TABLE It
COMPARATIVE PERFORMANCE: IDENTIFYING 30 SYNTHETIC MONDRIANS
UNDER SIX DIFFERENT, SPATIALLY CONSTANT ILLUMINATIONS

Indezing Algorithm Rank: 1 Failures | Av. Percentile | Av. Tolerance
Swain’s 20 out of 180 155 N/A N/A
Laplacian of Gaussian (o = 1) | 180 out of 180 0 1.000 568997

ustrated in Fig. 5. On the left-hand side of the figure the intensity, in
each of the three sensor channels, of a test mondrian under CIE A (a
reddish illuminant) is shown. This is contrasted, on the right of the
figure, with the appearance of the same mondrian under D100 (a
bluish illuminant). A large color shift has occurred; red responses
become weaker and blue responses stronger. Since the input
colors change so dramatically it is unsurprising that color indexing
performs poorly.

‘We calculated the Laplacian of Gaussian (¢ = 1.0) of the log color
image for the same mondrian under the same illuminants. We con-
trast the derivative images in Fig. 6. Under both illuminants the same
derivative image is observed—there is no “color” shift—so color
constant color indexing will work well.

B.1 A Test with Varying Illumination

The assumption of a single point source illuminant located at in-
finity is unrealistic. In practice most real world scenes have a com-
plex illumination field—the intensity and spectral distribution of the
incident illuminant vary across the scene.

To test color constant color indexing under illumination that var-
ies spatially in both intensity and spectral composition, we generated
more test mondrians. From left to right across the mondrian the il-
lumination is calculated as a « CIE_A + (1 — &) ~ D100 (where
a = (x — left)/(right — left) and x is the x coordinate of the mondrian).
Given these test mondrians (and the models calculated previously)

Color constant color indexing has perfect match success. Moreo
we ran color indexing and color constant color indexing. The respec-
tive match statistics are listed in Table III. Over the average tolerance
of the matches is high. In contrast color indexing performs poorly
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Fig. 5. The red (top), green (middle) and blue (bottom) intensity images of a
synthetic mondrian viewed under CIE A (reddish) illuminant are on the left.
On the right are images of the same mondrian viewed under the D100 (bluish)
iluminant. Note how much the intensities change between the left and right
columns. Color histograms based on the two columns will differ substantially.

Fig. 6. The result of applying the Laplacian of Gaussian operator to the mon-
drian images in Fig. 5. Note that the derivative images change very little
between the left and right columns even though the illumination has changed
from CIE A to D100. Ratio histograms based on the two columns will, there-
fore, also be very similar.

TABLE III
COMPARATIVE PERFORMANCE: SYNTHETIC IMAGES WITH ILLUMINATION
VARYING SPATIALLY IN INTENSITY AND SPECTRAL COMPOSITION

Indezing Algorithm Rank: 1 Failures | Av. Percentile | Av. Tolerance
Swain’s 7 out of 30 12 N/A N/A
Laplacian of Gaussian (o= 1) | 30 out of 30 0 1.000 .567207

with 12 out of 30 mondrians having a zero intersection with the cor-
rect model histogram.

B.2 Tests Using Human Cone Sensitivities

Using the Vos and Walraven [17] estimate of human cone sensi-
tivities as sensors, see Fig. 7, we can generate synthetic images and
examine to what extent color constant color indexing would be af-
fected if the the cones were the sensors. In Table IV we present the
theoretical performance results using the cones. The first row con-
tains the match statistics for all six test illuminants, i.e., 180 mondri-
ans (setl). The second row contains statistics for the test illuminants
excluding CIE A and D100 (set2)—120 mondrians. CIE A and D100
represent the extremes in the spectral variation of the illuminants.

A comparison of Tables II and IV reveals that the broadband na-
ture of the cones does impair the algorithm’s performance. Match
performance is increased when CIE A and D100—the extremes of
the spectral variation in the illumination—are factored out. Lower
rankings result and both the average match tolerance and average
percentile match increase.
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TABLE IV
LAPLACIAN OF GAUSSIAN INDEXING (0 = 1) USING
HUMAN CONE SENSITIVITIES
Images Rank: 1 2 8 > 3| Failures | Av. Percentile | Av. Tolerance
Setl 1350utof 180 10 7 18 10 0.97 0.194
Set2 108outof120 1 3 5 3 0.99 0.256

Finlayson et al., [5] recently demonstrated that sharper (or more
narrowband) sensor curves can be created by taking linear combina-
tions of the human cone sensitivities. Fig. 7 contrasts the original
cone sensitivities with sharpened counterparts. One would expect that
response ratios relative to these sharpened curves to be more invari-
ant to illuminant change and consequently provide a more useful

index for object recognition. We repeated the experiment, detailed -

above, using the sharpened sensors; the results are shown in Table V.

Performance has increased dramatically. Almosts all of the 180
test mondrians are matched with rank 1 and there is only one failure.
Removing the extremes in test illuminants (CIE A and D100) results
in almost perfect match success. The import of this is that color con-
stant color indexing need not require a visual system to have narrow-
band sensors; it is sufficient that there exist linear combinations
which are narrowband.

TABLE V
LAPLACIAN OF GAUSSIAN INDEXING (G = 1) USING SHARPENED
HUMAN CONE SENSITIVITIES
Images Rank: 1 2 3 > 3] Faslures | Av. Percentile | Av. Tolerance
Setl 172 0utof 180 4 3 [] 1 0.998 0.384
Set2 119outof 120 1 0 0 0 1.000 0.457

C. Tests on Real Images

Under illuminants of three different color temperatures (3,600K,
4,200K, and 5,400K) pictures were taken of 11 objects comprised
of three T-shirts, three cereal/detergent boxes, three sweaters, a Sun
User’s manual, and a child’s toy, for a total of 33 images. When
the illumination was changed, so were other viewing conditions;
shirts and sweaters were deformed, objects were rotated and oc-
cluded. The camera responds linearly with intensity and its spectral
response functions are as plotted in Fig. 4.
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Fig. 7. Vos Walraven fundamentals (solid line) are contrasted with the sharp-
ened sensitivities (dotted line).
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Table VI summarizes the match statistics for color constant color
indexing. A model database was constructed using the 11 images
taken under one illuminant and then the other 22 images were
matched against it. This was repeated for each illuminant. In the ta-
ble, each row corresponds to a different choice of model database.
Performance is good and is independent of the illuminant.

TABLE VI

REAL IMAGES WITH SPATIALLY VARYING ILLUMINATION: LAPLACIAN
OF GAUSSIAN INDEXING (6 = 1)

Database | Rank: 1 2| Av. Percentile | Av. Tolerance

3600K 21 1 0.995 0.165

4200K 22 0 1.000 0.145

5400K 22 0 1.000 0.137
TABLE VII

REAL IMAGES WITH SPATIALLY VARYING ILLUMINATION:
SWAIN’S ALGORITHM

Database | Rank: I 2 8 > 3 | Av. Percentile | Av. Tolerance
3600K 14 5 0 3 0.90 0.08
4200K 10 2 3 7 0.768 0.066
5400K 10 4 3 5 0.80 0.071

Table VII tabulates the results for Swain’s algorithm. While its
performance is poor under varying illumination, it is better than it
might have been. This is partly due to the experimental conditions
under which the pictures were taken. The color temperature of the
illuminant was changed by placing filters in front of the light source.
Unfortunately, these filters also diminished the intensity of the light.
To compensate for this, camera gain and aperture were adjusted. All
pictures were made to have pixels which lie close to the maximum
camera response, i.e., 255. Both aperture and gain adjustments are
linear so should not affect ratio constancy.

Normalizing images in this way encourages Swain’s algorithm to
work, since these camera adjustments create an approximate form of
color constancy. Nonetheless, even under these favorable experimen-
tal conditions Swain’s algorithm performs badly. The optimal choice
of model set appears to correspond to the 3,600K illumination. How-
ever, even here 36% of images are wrongly identified; this is ex-
tremely poor performance given the small database size. Furthermore,
rankings of five and seven were recorded. Given that there are only
11 models, such match performance is clearly unacceptable.

D. Future Work: K-Nearest Neighbor Classification

We expect that color constant color indexing would perform even
better if histogram matching were to be based on K-nearest neighbor
classification. For K-nearest neighbor classification (see Duda and
Hart [3] for a description), several images of each model object taken
under different illumination conditions would be stored in the model
database. The image of an unknown object would then be identified
on the basis of the K best matches to the model database.

The K-nearest neighbor method requires that histogram intersec-
tion be a metric. Fortunately, Swain has already demonstrated that if
two histograms are of the same size then their intersection is a dis-
tance metric. In particular, histogram intersection is equivalent to the
scaled sum of absolute differences, commonly referred to as the city-
block metric. Consider the intersection of two histograms M and .
each with n bins.

ifiM,. =2n:1i =T=1-H(l, M)=21—Ti[1,, - M|
i=1 i=1 i=1

For the case of ratio histograms, ratios close to one are eliminatec.
so for their intersection to be metric the ratio histograms must be
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normalized to have equal total bin counts. Results for color constant
color indexing when this metric condition is enforced are given
in Table VIIIL.

TABLE VIII
MATCHING WHEN HISTOGRAM INTERSECTION IS A METRIC

Database Rank: 1 2 8 > 3| Av. Percentile | Av. Tolerance
Swain’s Images 22 0 0 2 0.992 0.098
Synthetic Images 180 0 0 0 1.00 0.558
Real Images 19 3 0 0 0.986 0.11

As the table shows, normalization has only a slightly deleterious
effect on the matching, so even when the metric condition is satisfied
ratio histograms provide a good representation that remains stable
under changes in illumination.

When the histogram of the image of an unknown object is
matched to the model database, the K best matches are used. Of
course, if all K matches are to the same object then this is a strong
match. In general, however, it should be sufficient to select the most
numerously matched object. Since Swain’s method is vulnerable to
illumination changes it cannot be generalized to the K-nearest neigh-
bor method in that the illumination distorts the histogram so signifi-
cantly that we cannot expect the K nearest neighbors (K > 1) to all
represent the same object.

VI. CONCLUSION

Color constant color indexing based on comparing the color of
neighboring locations works very well. Our experiments show that it
extends Swain and Ballard’s color-based object recognition scheme
to scenes of uncontrolled illumination without affecting overall per-
formance. The strategy of histogramming color ratios (in essence
edges) instead of areas circumvents the need for an illumination-
independent description of the actual colors in the scene.
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Linear Time Euclidean Distance
Transform Algorithms

Heinz Breu, Joseph Gil, David Kirkpatrick,
and Michael Werman

Abstract—Two linear time (and hence asymptotically optimal)
algorithms for computing the Euclidean distance transform of a
two-dimensional binary image are presented. The algorithms are
based on the construction and regular sampling of the Voronoi
diagram whose sites consist of the unit (feature) pixels in the im-
age, The first algorithm, which is of primarily theoretical interest,
constructs the complete Voronoi diagram. The second, more
practical, algorithm constructs the Voronoi diagram where it
intersects the horizontal lines passing through the image pixel
centers. Extensions to higher dimensional images and to other
distance functions are also discussed.

Index Terms—Distance transform, Voronoi diagram, algo-
rithm, Euclidean distance.

I. INTRODUCTION

A two-dimensional binary image is a function, J, from the ele-
ments of an n by m array, referred to as pixels, to {0, 1}. Pixels of
unit (respectively, zero) value are referred to as feature (respectively,
background) pixels of the image. We associate the pixel in row r and
column ¢ with the Cartesian point (c, r). Thus, any distance function
defined on the Cartesian plane induces a distance function on the
space of image pixels. For a given distance function, the distance
transform of an image I is an assignment, to each pixel p, of the dis-
tance between p and the closest feature pixel in I The nearest-
neighbor transform of an image is an assignment, to each pixel p, of
the identity (or distance information sufficient to compute the identity
in O(1) time) of a feature pixel closest to p. Assuming that computing
the distance between two pixels is an O(1) time operation, it should
be clear that the distance transform can be constructed from the near-
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