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Abstract 
Computer vision is embracing a new research focus in which the aim is to develop visual skills for robots that 
allow them to interact with a dynamic, realistic environment. To achieve this aim, new kinds of vision algorithms 
need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determin- 
ing the location of a known object. Color can be successfully used for both tasks. 

This article demonstrates that color histograms of multicolored objects provide a robust, efficient cue for index- 
ing into a large database of models. It shows that color histograms are stable object representations in the presence 
of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving 
the identification problem, it introduces a technique called Histogram Intersection, which matches model and im- 
age histograms and a fast incremental version of Histogram Intersection, which allows real-time indexing into a 
large database of stored models. For solving the location problem it introduces an algorithm called Histogram 
Backprojection, which performs this task efficiently in crowded scenes. 

1 Introduction 

In recent years a new set of ideas about the goals and 
the methods of computer vision has gained promin- 
ence, and may be on its way to becoming the dominant 
paradigm, because it promises the quickest route to 
constructing working vision systems. The term used to 
describe this set of ideas is animate vision, introduced 
by Ballard (1989, 1991). Similar ideas have recently 
been expressed using the terms active perception 
(Bajcsy 1985, 1988), active vision (Aloimonos et al. 
1988; Aloimonos 1990), qualitative vision (Nelson 
1989, 1991), inexact vision (Thompson 1986), and 
dynamic vision (Dickmanns 1988). As in many other 
areas of science and technology, one of the driving 
forces behind the change in research strategy has been 
the availability of new research tools. In this case it has 
been the advent of powerful real-time imaging-process- 
ing equipment, light-weight video cameras, and off-the- 
shelf computer-controlled motors which allowed mov- 
able camera setups to be constructed. 

The real-time constraints of animate vision require 
fast algorithms that enable the robot to achieve its goals. 
Two such goals are determining the identity of an object 

with a known location, and determining the location 
of a known object. Color, because it is an identifying 
feature that is local, and largely independent of view 
and resolution, can be efficiently used for both tasks. 
The locality of color information leads to an efficient 
algorithm for recognizing three-dimensional objects 
from a variety of viewpoints. The color-identification 
algorithm can be used without figure-ground segmenta- 
tion, a task difficult to do without first recognizing the 
object. The algorithm can be used to identify defor- 
mable objects and substances described by mass nouns, 
something that most other recognition algorithms can- 
not be used for because they are based on shape. 

1.1 The Role of Color in Vision 

The ease of recognition using color strands in contrast 
to the neglect given recently to color as a recognition 
cue, although it has been used in earlier work (Feld- 
man & Yakimovsky 1974; Garvey 1976; Ohlander et 
al. 1978). Instead, much more attention has been given 
to geometric algorithms that extract shape from stereo, 
motion, and lighting cues. The fundamental reason that 
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color has not been used may be that it is not intrin- 
sically related to the object's class identity in the way 
that these other cues are. This view is well represented 
in Biederman (1985): 1 

Surface characteristics such as color and texture 
will typically have only secondary roles in primal 
access . . .we may know that a chair has a particular 
color and texture simultaneously with its volumetric 
description, but it is only the volumetric descrip- 
tion that provides efficient access to the representa- 
tion of CHAIR. 

The implicit claim made in the quotation above is 
that form follows function: Geometrical cues will be 
the most reliable of object identity. While this may be 
generally true, it may not be true for routine behavior 
(Chapman 1990). In such behavior, wherein familiar 
objects are interacted with repeatedly, color may be a 
far more efficient indexing feature. 

Color may be used in other situations as well. There 
are many examples in nature where color correlates 
with the class identity of an object, because of pigments 
which form part of the function of the object, or 
because species use it to send messages of enticement 
or warning. Similarly, color is used as a trademark or 
identifying feature in objects that occur in artificial 
environments, such as packaged goods, advertising 
signs, road signs, etc. Shape cues, in contrast to color, 
are highly resolution dependent, include only a highly 
restricted set that is view invariant (e.g., corners, zeros 
of curvature), and may require elaborate processing to 
extract them from an image. 

Robotic vision systems can also use representations 
that are heavily personalized to achieve efficient behav- 
iors. For example, it may not be helpful to model cof- 
fee cups as being red and white, but yours may be, and 
that color combination is very useful in locating it and 
recognizing it. Recognition of a particular object is a 
task that is probably carried out as often as classifica- 
tion; and while classification may in some cases pre- 
cede recognition of the individual this need not be true 
in general. 

Another reason why color has not been used may 
have been the lack of good algorithms for color con- 
stancy, that is perceiving a stable perception of color 
over varying light conditions, as poeple do in most cir- 
cumstances. However, recently there has been great 
progress in correcting both for the chromaticity of the 
illuminant (Maloney & Wandell 1986; Forsyth 1990; 

Rubner & Schulten 1989; Brainard et al. 1989; Novak 
& Shafer 1990) and for geometric effects such as 
specularity (Klinker et al. 1988). So there is good 
reason to believe that color can be used as an identify- 
ing invariant of object surfaces, even under varying light 
conditions. 

1.2 What vs. Where 

Eye traces of human observers suggest that we do not 
build categorical databases of the world around us in- 
dependent of the task we are carrying out but that, in- 
stead, only highly selective regions of the scene are ex- 
amined in detail, and these are highly dependent on 
the task being carried out. Furthermore, the sequen- 
tial nature of the eye movement traces suggests that the 
visual architecture cannot analyze the entire picture at 
a glance but must break the analysis up into smaller 
sequential components. One gross distinction that we 
make is between identification algorithms that analyze 
the foveated area during fixation and location algo- 
rithms that direct the eyes to new targets. 

Support for this what~where distinction comes from 
studies of human and primate brains. A significant 
feature of the gross organization of the primate visual 
brain is the specialization of the temporal and parietel 
lobes of visual cortex (Mishkin & Appenzeller 1987; 
Maunsell & Newsome 1987). The parietal cortex seems 
to be subserving the management of locations in space 
whereas the temporal cortex seems to be surbserving 
the identification of objects in the case where location 
is not the issue. In a striking experiment by Miskin 
(Miskin & Appenzeller 1987), monkeys with parietel 
lesions fail at a task that requires using a relational cue, 
but have no trouble performing a very similar task that 
requires using a pattern cue. The reverse is true for tem- 
poral lesions. Why should the primate brain be special- 
ized in this way? If  we think generally about the prob- 
lem of relating internal models to objects in the world, 
then one way to interpret this "What/Where" dichot- 
omy is as a suggestion that image interpretation, the 
general problem of associating many models to many 
parts of the image simultaneously, is either too hard 
or unnecessary, or both (see table 1). In order to build 
vision systems that function in real time, perhaps the 
problem must be simplified. In sections 3 and 4, ap- 
proaches to the identification and location problems are 
presented and tested. 
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Table 1. The biological organization of cortex into What/Where modules may have a basis in computational complexity. Trying to match a 
large number of image segments to a large number of models at once may be too difficult. (From Ballard (1991)). 

O b j e c t  to  Ma tch  Aga ins t  

One  M a n y  

I m a g e  One Ident i f ica t ion:  t r y ing  to  iden- 

Po r t i ons  t ify an ob j ec t  whose  loca t ion  

can be f ixa ted  

M a n y  Loca t ion :  t ry ing  to  find a I m a g e  i n t e rp r e t a t i on :  Too  

known ob jec t  ha rd?  

1.3 Outline 

Section 2 introduces the multidimensional color histo- 
gram. Given a discrete color space, a color histogram 
counts how much of each color occurs in the image. 
Color histograms are invariant to translation, rotation 
about an axis perpendicular to the image, and change 
only slowly with rotation about other axes, occlusion, 
and change of distance to the object. On the other hand, 
histograms for different objects can differ markedly, 
and there are a huge number of possible histograms (ex- 
ponential in the number of different colors in the color 
space). Therefore, the color histogram is an excellent 
representation to use for identifying objects. 

Section 3 introduces a method of comparing image 
and model histograms called Histogram Intersection, 
which is especially suited to comparing histograms for 
recognition because it does not require the accurate sep- 
aration of the object from its background or occluding 
objects in the foreground. Experiments show that Histo- 
gram Intersection can distinguish models from a large 
database, that it is robust to occlusion as well as image 
and histogram resolutuion, and that only a small 
number of histograms are needed to represent a three- 
dimensional object. They also show that an effective 
color-constancy algorithm will be needed for Histogram 
Intersection to work under variable light conditions. 
The section also describes a modification of Histogram 
Intersection called Incremental Intersection that allows 
efficient indexing into a very large database. 

Section 4 shows how a model histogram can be used 
to find the location of a known object (the target). The 
algorithm to solve this problem is called Histogram 
Backprojection. It finds the region in the image where 
the colors in the model histogram show up together, 
relying more on those colors that show up about as 
much as expected than those which show up much 
more, and therefore occur in other objects besides the 
target. 

The experiments in section 4.1.2 show that Histo- 
gram Backprojection works well even when the objects 
containing the same colors occur in the image and when 
the object is partially occluded. 

2 Color Histograms 

Given a discrete color space defined by some color axes 
(e.g., red, green, blue), the color histogram is obtained 
by discretizing the image colors and counting the num- 
ber of times each discrete color occurs in the image 
array. The image colors that are transformed to a com- 
mon discrete color are usefully thought of as being in 
the same 3D histogram bin centered at that color. To 
illustrate, figure 1 (see color figures on page 29) shows 
the output from a color camera together with a color 
histogram obtained from the image. 

Histograms are invariant to translation and rotation 
about the viewing axis, and change only slowly under 
change of angle of view, change in scale, and occlusion 
(see color figures 2 and 3 on page 30). Because histo- 
grams change slowly with view, a three-dimensional 
object can be adequately represented by a small number 
of histograms, corresponding to a set of canonical views 
(Koenderink & van Doorn 1976; Feldman 1985). 

Histograms define an equivalence function on the 
set of all possible colors, namely that two colors are 
the same if they fall into the same bin. This equivalence 
function is not ideal for recognition, because the relative 
range of colors that are considered the same as a given 
color depend on where the given color is located within 
the bin. Ideally, the colors considered the same would 
be in a region centered on the color, or in some region 
whose shape depends on knowledge of the possible var- 
iations introduced by changes in lighting or noise in 
the sensors. It should be determined by the random ef- 
fect of how the color happens to link up with respect 
to the tesselation of the discrete color space. Another 
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problem is that the equivalence is all or nothing. 
Presumably, as the difference in color of two object 
patches increases the probability of them being the same 
object patch decreases smoothly. The binary threshold 
used to define the tesselation serves as a crude approx- 
imation to the probability function. 

Histograms whose bins define overlapping bell- 
shaped (e.g., Gaussian) functions of color space would 
address some of the concerns of the previous paragraph, 
as would interpolation coding (Ballard 1987). Exten- 
sions such as these have not been considered because 
histograms in their simplest form have worked well. 
Why do histograms works, despite their inherent prob- 
lems? Objects tend to have surfaces that are made up 
of regions of color. Because of shading and camera 
noise these regions are blurred in color space, and so 
span more than one bin in a historgram. When image 
and model histograms of the same object are matched, 
a high match value is obtained because the regions 
match well, even if point-by-point matches on the ob- 
ject's surface are not always reliable. 

Strat (1990) has matched cumulative histograms with 
a match algorithm similar to Histogram Intersection to 
make a system that is robust to lighting changes. In a 
three-dimensional color space (x, y, z) the cumulative 
histogram is defined: 

C(x, y, z) = ~]j H(x, y, z) 
i=1 j = l  k= l  

where H(x, y, z) is the non-cumulative histogram 
discussed above. 

Both the object identification and object search im- 
plementations described in the following sections use 
color histograms to represent objects. 

3 I d e n t i f i c a t i o n  

This section describes how to use the color histogram 
to identify an object whose approximate location is 
known, the "Identification" problem of table 1. To iden- 
tify objects based on their color histogram, we must 
be able to judge the similarity of the color histogram 
of an image to the color histograms in the database. 
Section 3.1 introduces a method of comparing image 
and model histograms called Histogram Intersection, 
which tells how many of the pixels in the model histo- 
gram are found in the image. This method is especially 
suited to comparing histograms for recognition because 

it does not require the accurate separation of the ob- 
ject from its background of occluding objects in the 
foreground, often a difficult task to perform before the 
object has been recognized. The results of the experi- 
mental section show that: 

- -  Histogram Intersection can distinguish objects from 
a large database (66 objects). 

- -  The Histogram Intersection match value is insensi- 
tive enough to rotation and moderate changes in 
distance so that only a small number of views is 
needed to represent a three-dimensional object 
(about 6). 

- -  The range of colors that occur in the world need 
only be split into about 200 different discrete colors 
to distinguish a large number of objects, so color 
constancy to the degree demanded by the algorithm 
should be feasible. However, without transforming 
the input by a color-constancy algorithm, Histogram 
Intersection is sensitive to lighting changes. 

- -  Identification can be done even when a significant 
amount of the object is occluded (not visible). 

- -  Recognition accuracy is typically extremely insensi- 
tive to the histogram resolution used. 

Section 3.2 describes an incremental version of 
Histogram Intersection, called Incremental Intersection. 
By matching the largest bins from the image and the 
models, Incremental Intersection allows extremely fast 
indexing into a large database. Experiments show that 
Incremental Intersection does not sacrifice accuracy 
because most of the information is carried by the largest 
bins of the histograms. 

3.1 Histogram Intersection 

Because the model database may be large, we can 
afford only a highly restricted amount of processing 
per model, but at the same time we must be able to 
overcome the problems that hinder recognition, most 
importantly 

- -  distractions in the background of the object, 
- -  viewing the object from a variety of viewpoints, 
- -  occlusion, 
- -  varying image resolution, 
- -  varying lighting conditions. 

The matching method proposed here, called Histogram 
Intersection, is robust to the first four problems; the 
last is left to a color-constancy module that operates 
on the input prior to the histogram stage. 
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3.1.1. Description. Given a pair of histgrams, I and M, 
each containing n bins, the intersection of the histo- 
grams is defined to be 

._% 
2..J min (/j, Mj). 
/=1 

The result of the intersection of a model histogram with 
an image histogram is the number of pixels from the 
model that have corresponding pixels of the same col- 
or in the image. To obtain a fractional match value 
between 0 and 1 the intersection is normalized by the 
number of pixels in the model histogram. The match 
value is then 

H(I, M) = Z~':-I min(/j, Mj) 

Z;=l Uj 
The normalized histogram intersection match value 

is not reduced by distracting pixels in the background. 
This is the desired behavior since complete segmenta- 
tion of the object from the background cannot be guar- 
anteed. Segmentation is still a topic of active reserach, 
but the indications from the large amount of research 
done in the past are that complete, efficient, and reliable 
semgnetation cannot be done prior to recognition. The 
histogram intersection match value is only increased 
by a pixel in the background if 

- -  the pixel has the same color as one of the colors 
in the model, and 

--  the number of pixels of that color in the object is less 
than the number of pixels of that color in the model. 

There are a number of ways of determining the ap- 
proximate depth of an object, from laser or sonar range 
finders, disparity, focus, or touching the object with a 
sensor. The depth value combined with the known size 
of the object can be used to scale the model histogram. 
Alternatively, if it is possible to segment the object from 
the background and if it is not significantly occluded, 
the image histogram can be scaled to be the same size 
as the model histogram. Appendix A shows that when 
it is possible to segment the object from the background 
and thus scale the image histogram to be the same size 
as the model histogram, that Histogram Intersection is 
equivalent to the use of the sum of absolute differences 
or city-block metric. That is, if 

• Mi = ~ Ii 
i = l  i = 1  

then if we let T equal this value, we have 

1 
n 

1 - H ( I ,  M )  = , ~  Jig - Mil 
2T i=1 

If images are scaled by depth then Histogram Intersec- 
tion does not define a metric, since there is an asym- 
metry between the model and the image. That is, the 
model and image historgrams are not constrained to 
contain the same number of pixels, so the normaliza- 
tion factor in the denominator will differ matching 
image to model as matching model to image. This 
assymetry is a natural result of expecting background 
pixels in the image but not in the model. 

Histogram Intersection is capable of differentiating 
among a large number of different objects. Appendix B 
shows that the fraction of the multidimensional space 
defined by the bins of the histogram occupied by a 
single model is at most 

(26) .-1 

where 1 - 8 is the minimum Histogram Intersection 
match value allowed and n is the number of bins in a 
histogram. 

For 8 = 0.4 (a reasonable number based on our ex- 
periments) and n = 512, the fraction is 1 × 1 0  -51  . If 
histograms were distributed evenly throughout color 
space, the reciprocal of this number would approximate 
the carrying capacity of the histogram. But histograms 
are not distributed evenly throughout histogram space, 
as shown by figure 4 on page 30. For a back-of-the 
envelope calculation we can try to account for the 
unequal distribution by reducing the number of histo- 
gram bins to, say 100, as figure 2 would suggest. The 
fraction of histogram space is still very small, 
3×10 -11. A more accurate analysis might consist of 
generating a Monte-Carlo distribution of histograms 
throughout color space and measuring their overlap. 

3.L2. Experiments. Experiments were performed to see 
if a large number of objects can be distinguished and 
to test the senstitivity of the recognition technique to 
changes in view, image resolution, and occlusion. 

An experimental test of histogram intersection shows 
that the technique is capable of indexing into a large 
database, that is, eliminating most of the possible 
matches leaving only a small number for further con- 
sideration. The 32 images in figure 6 were matched 
to each of the 66 models in the database in figure 5 
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(see color figures on page 31). The color axes used for 
the histograms were the three opponent color axes, 
defined as follows (Ballard & Brown 1982): 

r g = r - g  

b y = 2 * b - r - g  

w b = r + g + b  

Here r, g, and b represent red, green, and blue signals, 
respectively. The rg, by, and wb axes are analogous to 
the opponent color axes used by the human visual 
system (Lennie & D'Zmura 1988). They were used here 
simply to allow the intensity (wb) axis to be more 
coarsely sampled than the other two, because the inten- 
sity axis is more sensitive to lighting variation from 
shadows and distance from the light source. The wb 
axis was divided into 8 sections, while the rg and by 
bins were each divided into 16 sections, for a total of 
2048 bins. Because the total intensity limits the color 
differences possible, only a fraction of them can actu- 
ally receive counts. For example, suppose the camera 
outputs a maximum M on each channel. Then if wb 
= 0 ( r  = g = b = 0) o rwb  = 3 M ( r  = g = b = 
M) then the variables by and wb must both take on the 
value 0 (see (Swain 1990a) for more details). Because 
most colors we experience are fairly unstaturated (i.e., 
close to the wb axis), even for objects such as ones in 

the database shown in figure 5, only about 200 (5 ×5 x8) 
of the 512 receive an appreciable number of counts, as 
is discussed further below. So we are dividing up col- 
or space fairly coarsely. 

For the 66-object database shown in Figures 5-8, 
the correct model is the best match 29 of 32 times and 
is always one of the top two matches. The three cases 
when the correct model was the second highest match 
are, listed in the format (model: object receiving larger 
response). 

1. Crunchberries: Campbell's Special Request soup 
2. Raisin Bran: Campbell's Chicken with Rice soup 
3. Windsurfer shift: Ivory detergent bottle 

Other, more expensive, matching techniques can be 
used to verify which of the top scoring models is the 
correct one, so it is not crucial that the correct model 
is always the best match. In the experiment the models 
were segmented from the background prior to generat- 
ing the model histograms. No segmentation was per- 
formed on the images of the unknown objects. 

In addition to using methods other than color to 
resolve ambiguous cases, there are steps that can be 
taken to improve the use of color information in the 
histogram intersection algorithm. All three of the 
models that received larger match values than the cor- 
rect models had smaller numbers of pixels in their 
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Fig. 7. The results of matching all combinations of image and database histograms displayed pictorially where the size of the squares are pro- 
portional to match values. The dominance of the diagonal values shows that the correct match is almost always selected. Twenty-nine of thirty- 
two matches are correct; in three cases the correct model received second-highest score. Models are along the horizontal axis; unknown objects 
along the vertical axis. 
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Fig. & Variation of the Histogram Intersection match value (see section 3 for definition) as the camera is moved with respect to a Snoopy 
doll. In the Distance graph the model image was taken at a distance of 124 cm. The match value changes slowly with changes in angle and distance. 

histograms. It is easier to find evidence for a smaller 
object in any given image region that it is to find evi- 
dence for a larger object. A recognition system could 
choose to verify the large objects with high match 
values before the smaller ones. Alternatively, if the 
distance is known, objects could be categorized by their 
size before indexing using color. 

One important claim is the insentivitity of the match- 
ing process to variations in view. To test this, the varia- 
tion in match value with respect to view changes in a 
single model, the Snoopy Doll, was studied further. 
Figure 9 shows how the Histogram Intersection match 
value changes as the camera is rotated about the Snoopy 
Doll shown in figure 5, and moved closer and further 
from the doll. Compare these match values to the ones 
in figure 10. Even at 45 degrees rotation or 1% times 
the original distance the match value (about 0.6) is 
higher than 99 percent of the false matches. 

Another important claim is that recognition accuracy 
is fairly insensitive to image resolution. Table 2 shows 
how match success is affected by reducing the resolution 
of  the images. The images were reduced in resolution 
by averaging the values of the pixels to be combined, 
and the histograms were taken from the reduced images. 
The model histograms were obtained from images of 
size 128 x90  and scaled by the appropriate multiplica- 
tive factor prior to matching. For each image the match 
values to each model are sorted; the rank is the posi- 
tion of the correct match in this list. The match percen- 
tile for each image matched is then calculated as (n- 
models - rank) / (n-model - 1), where n-models is 
the number of  models in the database (66). The match 
percentile is averaged over all 32 images in the experi- 
ment. A value of 100 indicates perfect matching; a value 
of  99 indicates that, on average, the correct match 
scored a higher match value that 99 of 100 of the 
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Fig. 9. Distribution of match values for incorrect image-model 
matches for the models and images shown in figures 4 and 5. The 
values counted here are all the off-diagonal elements of the matrix 
shown in figure 7. The values for incorrect matches rarely exceed 
the values for different views of the same object (see figure 8), even 
when they are obtained from significantly different angles and 
distances. 

other models, and so on. An average match percentile 
of 50 indicates the match selection is no better than 
random. 

This experiment simulates matching to an object that 
covers only a small region of the image array. The 
match values are reasonable even for images of size 
16xll, which is fewer than 200 pixels! The success 
of matching under low resolution can be explained by 
the fact that the images being matched to the database 
have fairly large regions of constant color. The color 
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Table 2. Image resolution and match accuracy. The Correct Match Placement columns show the rank of the correct match for each of thirty-two 
images in figure 5 being matched to the sixty-six models in figure 4. The model histograms were obtained from images of 128×90, and scaled 
appropriately. See the text for the definition of average match percentile. 

Image Size Correct  Match  Placement  Average Match  
1st 2nd 3rd 

128 x 90 29 3 0 

64 x 45 27 5 0 

32 x 22 24 7 1 

16 x 11 15 6 4 

8 x 5  4 4 3 

> 3rd Percenti le 

0 99.9 

0 99.8 

0 99.6 

0 97.8 

21 78.1 

Table 3. Match accuracy with scaled image and model resolution. Both model and image histograms were generated from images of the same 
indicated size. Interpret the match data as in table 2. 

Image Size Correct  Match  Placement  Average Match  
1st 2nd 3rd 

128 x 90 29 3 0 

64 x 45 29 3 0 

32 x 22 28 4 0 

16 x 11 23 5 3 

8 x 5  17 7 2 

> 3rd Percentile 

0 99.9 

0 99.9 

0 99.8 

1 99.3 

6 97.7 

histograms of more highly textured objects could 
change more dramatically over scale. Images obtained 
from typical cameras contain 512x485 (about IA 
million) pixels, so these results suggest that color 
matching could be performed reliably on regions that 
cover as little as 1/1000 of the total image area, pro- 
vided the camera was focused well enough that camera 
blur did not destroy detail in the image. 

Table 3 shows that match success is improved for 
extremely low-resolution images by obtaining the model 
histograms from low-resolution images as well. Since it 
is unlikely that matching will be done to such small 
parts of the image, scaling the model histogram will do 
in most circumstances. What this does suggest is that a 
hypothetical extremely inexpensive system that operated 
on very low-resolution images would be able to recog- 
nize the dominant object in the image using color about 
as well as a full-resolution system. Examples of the 
reduced-resolution images are shown in color figure 6. 

Recognition accuracy is also fairly insensitive to 
occlusion. To test this, subparts of the images were 
matched to the database. First, the bottom third of 
each image was removed (see color figure 11 on page 
31) before matching to the database. Then, the right- 
hand third of the image was removed, leaving only 4/9th 
of the original image (color figure 12). This set was also 
matched to the database. The results are shown in 

table 4. There is only slight degradation in the match 
accuracy with occlusion. The correct matches are still 
among the top three match values (out of sixty-six), 
even for the most severe occlusion. 

These results demonstrate how match values will 
degrade under occlusion when the occluding object can 
be segmented from the object of interest. Matching in 
the presence of occlusion will be more difficult when 
segmentation cannot be achieved, because colors from 
the occluding object may also match to the models in- 
the database. Nevertheless, other experiments have 
shown that matching can be achieved even with some 
occlusion of this sort (see Swain (1990b)). 

1 

. 8 - ~  

Fraction .6 
of Pixels .4 

.2 

- 0  I I 
-0 100 200 300 

Ilistogram Bins 

Fig. 12. Distribution of pixels across histogram bins for the database 
shown in figure 4 (black background removed). A point (x, y) on 
the curve indicates that fraction y of pixels fall into the x largest bins. 
There are a total of 512 bins in the entire histogram. 
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Table 4. Occlusion and match accuracy. 

Occluded 

Region 

None  (F igure  4) 

B o t t o m  (Figure  10) 

B o t t o m ,  Side (F igure  11) 

Cor rec t  Ma tch  P lacemen t  

1st 2nd 3rd > 3rd 

29 3 0 0 

27 4 1 0 

22 5 5 0 

Average  M a t c h  

Percent i le  

99.9 

99.7 

99.3 

100 

99.8 - 

Average 99.6- 
Match 

Percentile 99 .4-  

99.2 

99 

64 
I [ I I I I 

128 256 512 1 0 2 4  2048 4096 8192 
Accessible Bins in Histogram 

Fig. 13. Effects of changing histogram resolution on match success. 

The number of bins in the opponent color histogram 
that receive a significant number of counts is much 
smaller than the total number of bins that could possibly 
receive counts. Figure 4 shows the distribution of counts 
for the histograms representing the models in figure 5. 
(Remember the background black is subtracted before 
creating the model histograms.) Sixty-five percent of 
the counts lie in the top fifty bins, eighty-three percent 
lie in the top one hundred bins, and ninety-six percent 
lie in the top two hundred. The bins that receive the 
most counts lie on the white-black (wb) axis. The 
numbers drop off with distance away from this axis. 

The results of Histogram Intersection were extremely 
insensitive to the number of bins in the histogram used 
in the image and model histograms. Figure 13 shows 
the effects of varying the size of the histogram over two 
orders of magnitude, from 64 accessible bins (8 x 8 x4 
bins total) to 8125 accessible bins (40×40x20 bins 
total). There are only small changes in the match effec- 
tiveness over the entire range of histogram sizes. Note 
that matches in the high resolution histograms rely on 
the fact that there are smooth distributions of colors 
on the objects. These distributions arise from the large 
regions of constant color being blurred in color by 
shading and camera noise. In the highest resolution 
histograms the same pixels are not matching each other, 
but different pixels from the same color region. 

In a set of real-time experiments employing a 
Datacube pipelined image processor, 8×8x8  (red, 
green, blue) histogram were used instead of the 16× 

16 x 8 opponent color histograms, with good results, so 
the choice of color axes is not crucial either. The col- 
or camera was mounted in our mobile robot platform 
and panned across a floor containing the database of 
colored shirts. The shirts were spread out on the floor, 
but no special effort was made to lay them perfectly 
fiat or approximate the view in the database. Since this 
experiment tests the "what" or identification problem, 
the panning is done so that the image serves as a fovea, 
that is, each shirt, when centered, occupies the major- 
ity of the image. Nevertheless, the shirts are close 
enough that there is often another shirt in the 
background when a match is being done. The shirt oc- 
cupying the major portion of the image is invariably 
the top notch. 

As discussed at the beginning of this section, it is 
expected that a color-constancy algorithm be used 
before histogramming. Nonetheless, we tested Histo- 
gram Intersection in the presence of changing light in- 
tensity without color constancy. One aim is to see how 
necessary a color-constancy algorithm is. As we ex- 
pected, changes in lighting conditions affect the match 
value considerably. More importantly, this experiment 
can be also used to test how well a color-constancy 
algorithm must work. Changing light intensity was 
simulated by multiplying the image pixel values by a 
constant factor ranging from 0.4 to 1.6. The resulting 
pixel values were constrained to be no greater than 255, 
as would occur in a camera. The transformed images 
were matched to the original models. The results are 
displayed in figure 14. 

It appears that with 16×16x8 opponent color 
histograms, where 8 is the number of bins along the 
white-black axis, good pruning of the possible matches 
can be achieved if the intensity is recovered to within 
about plus or minus 15 percent of the true values. Since 
one bin in the white-black direction only represents at 
most 12.5 percent of the maximum value in the histo- 
gram, the matching process can still work even if many 
of the counts fall in neighboring bins. This is because 
regions tend to cover a number of neighboring bins in 
color space, the same explanation for why fine-grain 
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Fig. 14. Effects of changing intensity on match success. 

histograms can be used for accurate matching (see 
figure 13). When the multiplying factor is 0.4, a 
60-percent decrease in light levels, the average match 
percentile is 61.7, not much better than random (50). 

The simplest color constancy algorithm simply nor- 
malizes the red, green, and blue responses by their sum, 
that is: 

r '  = r/(r + g + b) 

g '  = g/(r  + g + b) 

b '  = b/(r  + g + b) 

These new axes provide only two degrees of freedom, 
since the values of any two define the third. With 8 × 8 
(r ', g '  ) histograms, an average match percentile of 98.0 
was achieved (see table 5), with the worst ranking of 
an object matched to itself being a seventh place for the 
Raisin Bran box. The normalized intensity values are 
unaffected by changes in lighting intensity (assuming 
a linearized camera), making them much more effec- 
tive than the 3D histograms in variable lighting condi- 
tions. By placing an object of known reflectance in the 
image and normalizing the responses with respect to 
it, a third axis of color information could be recovered 
under variable intensity lighting. 

Table 5. Matching with normalized color signals. 

Correc t  Match  P lacement  Average  Ma tch  

1st I 2nd I 3rd > 3 r d  Percent i le  

15 I 17 3 7 98.0 

In summary, Histogram Intersection can successfully 
prune the number of candidates in a large database to 
a small number of possible matches. Because color 
histograms change only slowly over view, a small 
number of them can be used to represent a three- 
dimensional object. Histogram Intersection is robust 
to occlusion and changes in image and histogram reso- 

lution. With three sensors, three-dimensional histo- 
grams are sensitive to changing light conditions; and 
so, when the lighting is variable, it must be used after 
the pixel array has been transformed by an effective 
color-constancy algorithm. We demonstrated the effects 
of using the simplest color-constancy algorithm, scal- 
ing the color axes by the total intensity. The sensitivity 
to intensity variations was eliminated, as the cost of a 
moderate decrease in the ability to prune objects from 
the database under changing lighting conditions. 

Histogram Intersection is an efficient way of match- 
ing histograms. Its complexity is linear in the number 
of elements in the histograms. Two 16×16×8 histo- 
grams can be matched in 2 milliseconds on a SUN 
Sparcstation 1 (a 12 MIP RISC machine). The histo- 
grams themselves are efficient to compute using parallel 
image processing hardware. For instance, generating 
a 16×16)<8 histogram from a 512x485 image takes 
about 40 milliseconds using a Datacube FeatureMax 
board, including the time needed to transfer the 
histogram to the host. 

Histogram intersection is efficient compared to most 
recognition schemes. Nevertheless, for large databases 
the linear dependence of the recognition scheme on 
database size will add up. Parallel processing is one 
way of attacking this problem, since the match over dif- 
ferent models is easily parallelizable. Another way, 
which reduces the recognition complexity to constant 
time for a broad range of databases, is described in the 
next section. 

3. 2 Efficient Indexing into a Large Database 

We introduce an algorithm, called Incremental Intersec- 
tion, for indexing into a large database efficiently on 
a sequential computer. In this scheme, only the largest 
bins from the image and model histograms are com- 
pared, and a partial histogram intersection value is com- 
puted. The computation is incremental, so that the algo- 
rithm can be interrupted at any time after the sort with 
as good results as one could expect with the amount 
of time used. This last feature could prove to be im- 
portant in a system that interacts with a dynamic world, 
in which the times that actions are taken are often dic- 
tated by outside events. 

Incremental intersection is split into two phases, an 
off-line phase in which the data structure representing 
the database is generated and an on-line matching 
phase. In the off-line phase: 
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Table 6 Recognition times. Each histogram contains 2048 bins. Times (in milliseconds) were measured on a SUN SPARCstation 1. 

His tog ram In te rsec t ion  

Inc remen ta l  In te rsec t ion  ( B = 1 0 )  15 

1. Assign to each bin in each model histogram a key 100 
which is the fraction of the total number of pixels 
in the histogram that fall in that bin. 99 

2. Group the bins by index (color). Average 
3. Sort each group by key. Match 98 

Percentile 

In the on-line phase: 97 

l. Sort the image histogram bins by size. 
2. For the B largest image bins, starting with the largest, 96 

match the image bin to all the model bins with the 
same index whose key is larger. If previously un- 
matched model bins are matched, match them to all 
larger image bins. 

The efficiency of Histogram Intersection and Incre- 
mental Intersection is compared in table 6. A complex- 
ity analysis shows that the time for Histogram Intersec- 
tion depends linearly on the product of the size of the 
histogram and the size of the database, i.e., the 
algorithm is O(nm), where n is the total number of bins 
in the histogram and m is the number of models in the 
database. The asymptotic complexity of Incremental In- 
tersection is O(n log n + cm), where c is the number 
of image bins used for indexing into the database. The 
complexity of Incremental Intersection is also linear in 
the size of the database. However, the constant factor 
is so low that for most databases the complexity is 
dominated by the sort of the image histogram bins. 

Incremental Intersection only computes an approx- 
imation of the Histogram Intersection value, unless it is 
allowed to match every bin in the image histogram. One 
would think, therefore, that its performance would only 
be a fraction as good as complete Histogram Intersec- 
tion. Figure 15 shows that the match effectiveness 
climbs very quickly and even surpasses that of Histo- 
gram Intersection using small numbers of image histo- 
gram bins. After examining 10 bins, Incremental Inter- 
section matches the images to the models without error, 
whereas in three cases the Histogram Intersection match 
value for the correct match was the second highest. 
How can this happen? Most of the surface of each object 
in the test database consists of at most five or six dif- 
ferent colors, so then histogram bins capture a good per- 

D a t a b a s e  Size 

19 37 70 

38 73 150 

15 15 

-0 
I I I I 
5 10 15 20 

Image t t i s togram Bins Matched 

Fig. 15. Effectiveness of Incremental Intersection as function of the 
number of image histogram bins matched. For comparison, the 
average match percentile for Histogram Intersection is 99.86. 

centage of the uncorrupted signal coming from the ob- 
ject, while the smaller bins are more likely to be noise. 

4 Location 

The previous section discussed recognizing an unknown 
object whose location is known, the "Identification" 
box in table 1. This section discusses the complemen- 
tary task, locating a known object, the "Location" box 
in the same table. Determining the location of an ob- 
ject is necessary when executing many tasks, not only 
looking for a "lost" object. Fixating a moving object, 
or a stationary object when the robot is moving, also 
requires keeping track of the location of the object 
(Coombs 1989). Verging a pair of cameras upon an ob- 
ject requires determining the location of an object in 
both images so that they can be registered (Olson & 
Coombs 1991). All these tasks can be accomplished 
using color histograms and an algorithm called Histo- 
gram Backprojection. 

4.1 Histogram Backprojection 

Histogram Backprojection answers the question 
"Where in the image are the colors that belong to the 
object being looked for (the target)?" The answer is 
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given in such a way so that the colors that appear in 
other objects besides the target are deemphasized so 
that they are less likely to distract the search mechan- 
ism. Experiments show that the technique works for 
objects in cluttered scenes under realistic conditions. 

In Histogram Backprojection the model (target) and 
the image are represented by their multi-dimensional 
color histograms M and I as in Histogram Intersection. 
A ratio histogram R, defined as 

Ri = min I M i ,  1 1 
Ii 

is computed from the model and image histograms. It 
is this histogram R that is backprojected onto the im- 
age, that is, the image values are replaced by the values 
of R that they index. The backprojected image is then 
convolved by a mask, which for compact objects of 
unknown orientation could be a circle with the same 
area as the expected area subtended by the object. The 
peak in the convolved image is the expected location 
of the target, provided the target appears in the image. 

4.1.1. Description. More precisely, let h(c) be the 
histogram function that maps a color c (a three- 
dimensional value) to a histogram bin (another three- 
dimensional value). Let D r be a disk of radius r: 

r = ; 1  if X~X 2 + y2 < r 
D x,y 

0 otherwise 

Define the "loc" function to return to pixel (x, y) with 
the value of its argument, and let the * symbol denote 
convolution. Then Histogram Backprojection can be 
written 

1. for each histogram bin j do 

R j ' = m i n  I M J ,  1 1 

2. for each x, y do 

bx,y : =  Rh(cx,y) 

3. b : = D r  . b  

4. (xt, Yt) := loc(maXx,y bx.y) 

4.1.2. Experiments. As a demonstration of Histogram 
Backprojection, we consider figure 6 as a single crowd- 
ed scene, and look for objects within it using the models 
from figure 5. The results are shown in figures 16 and 

17 (see color figures on page 32). In all cases but four 
the largest peak in the convolved image corresponds to 
the correct object. The four cases in which it doesn't 
are listed below in the format (target: objects receiv- 
ing larger response). 

1. Wheaties: Manischewitz matzo farfel. 
2. Campbell's clam chowder: red and white shirt, 

Campbell's chicken soup. 
3. Charmin: orange White Cloud. 
4. Mickey Mouse underwear: red and white shirt, USA 

Flyer. 

The success rate is shown more graphically in 
table 7. 

Because the convolution can be carried out on a 
reduced resolution image, Histogram Backprojection 
is very efficient. Its complexity on a sequential com- 
puter would be O (I + c * I '  ) where I is the number 
of pixels in the full-resolution image, I '  is the number 
of pixels in the reduced resolution image, and c is the 
number of pixels in the convolution mask applied to 
the reduced resolution image. 

Table 7. Performance of Histogram Backprojection. The number 
in each square is the rank of peak that falls into the corresponding 
square in figure 5 when looking for the model whose image is in 
that square. A " 1 "  means the object has been correctly located, 
a " 2 "  indicates the object created the second largest peak in the 
convolved backprojected image, etc. 

1 1 1 1 1 1 
2 1 3 1 1 1 

1 1 2 1 1 1 
1 1 1 1 1 1 

1 3 1 1 1 1 

Histogram Backprojection has been implemented in 
a Datacube image processor, with a Sun 4/260 work- 
station as its host. The Datacube can do histograms, 
subsample, and convolutions with 8 x 8 masks within 
a frame time. Using 8 × 8 × 8 (512 total) size histograms 
and a reduced image of size 32 × 32 (1024 pixels) for 
the convolutions, the algorithm can be executed four 
times a second. The real-time experiments show that 
because Histogram Backprojection is extremely effi- 
cient it is useful not only for locating an object but also 
for tracking an object moving relative to the robot. 

Histogram Backprojection, like Histogram Intersec- 
tion, is robust to occlusion. If instead of using figure 
6 as the crowded scene, we use figure 12 in which only 



four-ninths of the image of each object remains, the 
location of each object can be found almost as well as 
in the image with no occlusion. They only target for 
which the effectiveness of Histogram Backprojection 
suffers badly is that of Charmin paper towels, the ob- 
ject that already had a portion occluded in the original 
image. As for the previous experiment, we show the 
backprojected ratio histogram for the blue and white 
striped shirt (see figure 18 on color page 32) and the 
combined results of looking for each of the objects in 
the image (see figure 19 on color page 32). In all cases 
but six the largest peak in the convolved image cor- 
responds to the correct object. The six cases in which 
it doesn't are listed below in the format (target: objects 
receiving larger response). 

1. Campbell's clam chowder: red and white shirt. 
2. Manischewitz chicken soup: Manischewitz bakit, 

Manischewitz matzo farfel. 
3. Angelsoft: Charmin. 
4. Charmin: orange White Cloud, Bakit, Northern, 

purple White Cloud, Campbell's Special chicken 
soup, Manischewitz chicken soup. 

5. Balloons shirt: white with pink border shirt. 
6. Mickey Mouse underwear: red and white shirt. 

The success rate is shown diagrammatically in table 8. 

Table R Performance of Histogram Backprojection under occlusion. 
The number in each square is the rank of peak that falls into the 
corresponding square in figure 11 when looking for the model whose 
image is in that square. 

1 1 1 1 1 

1 1 2 1 1 

1 2 7 1 1 

2 1 1 1 1 

1 2 1 1 i 

While the effects of occlusion are different for Histo- 
gram Intersection and Histogram Backprojection be- 
cause the algorithms differ in how they process spatial 
information, the effects of changing image and histogram 
resolution are similar: Both algorithms will be success- 
ful if and only if the colors in the object stay in match- 
ing bins to the colors in the model. Since Histogram In- 
tersection is very insensitive to changing the image or 
histogram resolution it is expected that Histogram 
Backprojection will be as well. Likewise, Histogram 
Backprojection is expected to be about as sensitive to 
failures of color constancy as Histogram Intersection. 
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5 Conclusion 

The advent of real-time image-processing hardware is 
changing the research focus of computer vision in a 
fundamental way. Instead of attempting to build elab- 
orate representations of the environment from static im- 
ages, a new objective is to construct visual skills which 
allow a robot to interact with a dynamic, realistic envi- 
ronment. To achieve this objective, new kinds of vi- 
sion algorithms need to be developed that are capable 
of running in real time and subserving the robot's goals. 
Two important skills for interacting with the environ- 
ment are identifying an object in a known location and 
locating a known object. We have shown here how ro- 
bust, extremely efficient algorithms for achieving these 
objectives can be designed using color histograms as 
their model and image representations. The robustness 
of the algorithms is directly related to their real-time 
performance. Since the algorithms function at or near 
video frame rates of 30 frames per second, they can 
fail on several frames per second and still achieve the 
overall goals of identification and location. 

In the past research has concentrated on geometric 
cues. The shift toward real-time systems requires faster 
algorithms. For instance, in Rosenfeld's comprehensive 
1989 bibliography, there are thirty-seven articles on 
recognition of three-dimensional objects, all of which 
use shape, z In contrast, there are no articles that use 
color for object identification. Color-based algorithms 
fulfill the requirement of such systems, because of their 
fast performance and capability of dealing with changes 
in view, object deformations, and inaccurate segmenta- 
tion of objects from their backgrounds. 

Because of color's important applications and ease 
of use, color cameras and digitizing facilities should 
be a feature of robotic systems that have to operate in 
typical human surroundings. There are applications of 
computer vision being considered in which color could 
play an important role. For instance, manufacturers of 
automated check-out devices in grocery stores are con- 
sidering automating the identification of fruits and 
vegetables. Color would be an important identifying 
feature in this situation. As well, an aquarium is investi- 
gating installing equipment to automatically identify the 
fish swimming by a visitor to an aquarium. Again, the 
coloration of the fish could be an important identify- 
ing feature. 

Color could also be used for vision systems in 
manufacturing environments provided the environment 
is color coded. Identification, location, and tracking 
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in such an environment using color would be straight- 
forward. Color may be the easiest way to label objects 
and locations for a robot. Robots could pick up the tools 
they need based on color, follow lines on the floor of 
various colors to go to specific destinations, dangerous 
objects could be color coded in certain ways, the boun- 
dary of the workspace could be denoted by a colored 
band. The possibilities are numerous. 

One especially convenient aspect of manufacturing 
environments is that the lighting can often be carefully 
controlled. Consistent lighting would avoid the neces- 
sity of solving the color constancy problem. Lighting 
which can be described by a small set of basis func- 
tions is easier to discount than lighting which may be 
from a variety of sources with different spectra. Only 
one basis function is needed when the light is from only 
one type of bulb. Similarly, color constancy is easier 
to achieve if the surface reflectances come from a 
known distribution which can be described by a small 
number of basis functions. This objective may be more 
easily achieved in a constrained manufacturing environ- 
ment than in an unconstrained environment. 

5.1 Future Work 

One problem that requires much more careful analysis 
is the appliction of color recognition under varying light 
conditions. In addition to the simple normalization 
scheme described in the text, Novak and Shafer's the 
"guided" color-constancy algorithm of Novak and 
Shafer (1990) is a good one to try, because the large 
numbers of constraints introduced by the color chart they 
place in the scene should give it better color constancy 
than the algorithms that deduce the lighting from less 
reliable information. We conjecture that if the match- 
ing techniques introduced here don't work under vari- 
able lighting using Novak and Shafer's algorithm, they 
probably won't work with any of the other algorithms. 

The light source does not have to be beyond the con- 
trol of the robot or vision system. For instance, a robot 
could carry its own light source with it. If this light 
source were significantly stronger than the other lights 
in the room, only the intensity would change from 
image to image. If the distance to the object were 
known, even the intensity could be calculated. Some 
time of flight-range laser-range sensors also generate 
reflectance images. If a collection of lasers at different 
wavelengths were used, the reflectance images could 
be analyzed just as the color images are here. 

A second challenging problem is identifying the 
region from which to extract the histogram for histo- 
gram intersection. Histogram intersection is fairly 
insensitive to pixels in the background, nonetheless, 
since they can cause mismatches and since cropping 
a portion of the object will diminish the match value, 
delimiting the object of interest is an interesting prob- 
lem. The answer to this problem will probably not be 
a single solution, but a number of different ones each 
of which works better under a different situation. For 
isolating a moving object, motion cues should be used; 
for isolating an object separated from its background 
by depth, disparity cues or cues from an active depth 
sensor should be used. The visual motion and dispar- 
ity cues or cues from an active depth sensor should be 
used. The visual motion and disparity cues may only 
be reliable at sparse points on the surfaces, and so they 
must be either extended by surface models or enclosed 
within a bounding region. A simple technique for 
eliminating background pixels based on verging on the 
object of interest and ignoring those pixels that do not 
register in the two eyes was demonstrated by Swain 
(1990a). Other techniques such as desensitization to 
a commonly occuring background could be used. 

The algorithms have not been tested in cooperation 
with a method for estimating the depth of the object. 
Provided the object is within a fairly small distance, 
let's say 5 meters, the problem should be solvable us- 
ing standard techniques. In this range, vergence 
(stereo), laser-range finders, and focus can recover ap- 
proximate depth. A demonstration of this capability 
would be interesting. Estimating depth at long distances 
is more problematic, and may only be possible if other 
objects at a similar depth are first recognized and pro- 
vide scale. 

It may be possible to use other surface properties 
besides color for identification and location. The most 
obvious one to try is texture. Instead of histogramming 
colors, outputs of nonoriented and oriented spatial fil- 
ters could be historgrammed. Malik and Perona (1990) 
have demonstrated a scheme for finding texture boun- 
daries based on the output of such filters, but they have 
not investigated how to recognize texture. There is one 
problem to be overcome in texture recognition that does 
not occur in color recognition, viz., that the direc- 
tionality of the filters does not make this scheme 
naturally orientation invariant. One approach to the 
solution of this problem would be to extract direction 
invariant measures from the output of the filters; 
another would be to attempt to align the image and 
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model before comparison of the histograms. One draw- 
back to the use of texture in machine vision systems 
is the large amount of computation needed. For in- 
stance, Malik and Perona employ the output of 192 dif- 
ferent filters. Since Malik and Perona were proposing 
a biological model, cost of implementation in image 
processing hardware was not an issue. There may be 
ways of economizing on the use of filters using ap- 
proaches such as suggested by Freeman and Adelson 
(1990). 

Is it possible that a histogram-style approach can 
work for shape recognition? Pigeons can recognize 
Charlie Brown pictures in a variety of positions, orien- 
tations, and scales (Hernstein 1982). They do not 
distinguish, however, between a correct Charlie Brown 
figure, and a "jumbled up" version where the figure 
has been cut in half, and the two halves rearranged. 
It is possible, therefore, that they are using some sort 
of histogram-like data structure for recognition which 
counts the local features that show up but does not con- 
sider their relative orientation. 

The sum and minimum and division operations 
needed for Histogram Intersection and Histogram Back- 
production could easily be implemented in neural hard- 
ware. Could it be possible that algorithms similar to 
these are used in the brain? There are wavelength- 
sensitive cells in monkey Visual Area 4 that have large 
receptive fields and which could be loosely described 
as histogram cells. On the other hand, the work by 
Treisman (1985) and others on preattentive ("pop-out") 
phenomena suggests that people may have trouble 
searching for a conjunction of colors, as is done in the 
Histogram Backproduction algorithm. Until now, there 
has been no work in how color is used for identifica- 
tion or location in biological systems. This article pro- 
vides computational models whose presence could be 
explored in biological systems. 
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Appendix A: Relation to Pattern Recognition 

Each of the different bins of the histogram can be 
considered a different feature, as is done in pattern 
recognition (Young & Fu 1986). This approach to 
recognition has been studied extensively, and so it is 
important to discuss Histogram Intersection in relation 
to the approaches used in this discipline. 

In pattern recognition, the set of features are 
designated to be axes in a feature space, in which the 
object is defined to be a point (J] . . . . .  f~). A metric 
is defined on the space, and identification is done by 
finding the nearest object in feature space to the set 
of features extracted from the image. Recall that metric 
space is defined as follows: 

Definition 1: A set X, whose elements we shall call 
points, is said to be a metric space if with any two points 
p and q of X there is associated a real number d(p, 
q), called the distance from p to q, such that 

1. d(p, q) > 0 if p # q; d(p, p) = 0; 
2. d(p, q) = d(q, p);  
3. d(p, q) < d(p, r) + d(r, q) for any r E X. 

Any function with these three properties is called a 
distance function, or a metric. 

When the image and model histograms are scaled 
to be the same size, as can be done when the object 
in the image can be segmented from its background, 
then using Histogram Intersction is equivalent to us- 
ing the sum of absolute differences or city-block metric, 
as is shown below. 

THEOREM 1. If 

~ Mi = ~-~j li 
i = l  i=1 

then 

1 - H(L M)  -- ! I Ii - Mil 
2n i=1 

Proof The key to the proof is the identity shown in 
equation (1). To derive this identity, we note that 

li = min(Ii, Mi) +[I i  - Mi[ if li > Mi 

/~ = min(Ii, Mi) if I i <_ Mi 



26 Swain and Ballard 

and 

Mi = min(Ii, Mi) if I i > M i 

M i = min(Ii, Mi) + Ill - Mil i f l i  < Mi 

In either case 

Ii + Mi = 2 min(li, Mi) + Ili - Mil (1) 

The proof follows easily. Let 

M~ = ~ = k 

i = l  i=l 

Then, using equation (1), 

k =  1 ~_a(Ii + 
2 i = 1  

",,_L, 
= ~.] min(Ii, M/) + _1 ~.j i i  i _ Mi I 

i=1 2 i=1 
(2) 

By definition, 

1 - H ( I ,  M )  = 
k - Z"i=l min(/i, Mi) 

k 

and so 

1 - H ( I ,  M )  = 
k - N" min(li, M/) i=1 

k 

Replacing the k in the numerator by the expression in 
equation (2) we have 

1 - H ( I ,  M) = 1 ~ IIi - Mi l  
2k i=1 

and the theorem is proven. Q.E.D. 

If  the model and image histograms do not contain 
the same number of pixels, that is, if 

i=1 i=1 

then the symmetry relation (axiom number 2) does not 
hold and Histogram Intersection is not a metric. 

Appendix B: Representing a Large Database with 
Color Histograms 

Consider the multidimensional space E defined by the 
bins of the histogram. That is, points in E are n-tuples 

(C l ,  C 2 . . . . .  Cn) where n is the number of bins in the 
histogram, and Cl is the count in the ith bin. We ig- 
nore the discrete nature of histograms obtained from 
discrete images, and assume that the c i are continuous 
values in the range [0, n]. We assume that image 
histograms are scaled to contain the same number of 
counts I as the model histograms, and so Histogram 
Intersection is equivalent to the use of the city-block 
metric (see Appendix A). 

Define a city-block metric n-ball to be the follow- 
ing n-dimensional geometric figure: 

~_alxi < 1 (3) 
i=1 

The theorem we wish to prove relies on the following 
lemma. 

LEMMA 2. The volume of the intersection of a city-block 
metric n-ball of  radius r and any n - 1 dimensional 
hyperplane through the origin is less than or equal to 
the area of the city-block n - 1 ball of  radius r. 

P r o o f  From elementary multidimensional geometry we 
know that the intersection of the geometrical figure 
defined by equation (3) with an n - 1 dimensional 
hyperplane passing through the origin is of the form 

n - 1  

l aixi'l<_ 1 
i=1 

where the xi' are defined with respect to a natural or- 
thonormal coordinate system for the hyperplane in 
which the nth axis is perpendicular to it. Using the 
triangle inequality we have for all points in the n-ball 

Ixi'l = Ixil <- Ixi] <- 1 
i=1 i=1  

and so it follows that for all i, l ail > 1. Therefore, 
the intersection of the n-ball with the hyperplane could 
be contained within an n - 1 ball (in the coordinate 
system of the hyperplane), and so its is of smaller 
size. Q.E.D. 

We can now show 

THEOREM 2. The fraction of the volume of E occupied 
by a single model is at most 

(26)n- 1 

v~ 



where 1 - 6 is the minimum Histogram Intersection 
match value allowed and n is the number o f  bins in a 
histogram. 

Proof  The points in E for which 

~- - ] c i=  l 
i=0 

form an n - 1 dimensional subset of E, which we will 
call P. We can find the n - 1 dimensional volume of 
P by differentiating the n-dimensional volume of the 
set V, in which 

~ ] c i  <-- I 
i=0 

By induction, it can be shown that the volume of V is 

I n 
~ v  - (4)  

n! 

The volume of E is then 

(d/dl)  ~ v ( I )  
~ p  - (5) 

( d/dI ~Dp(I) 

where :D e is the distance from the origin to P. 
To understand this formula think of the numerator 

multiplied by 61 as the differential change in volume 
of V and the denominator multiplied by 61 as the dif- 
ferential width of the volume. 

Since the closest point to the origin in P is (I/n, I/n, 
. . . .  I/n ), we have 

I 
:De - (6) 

dn 

Differentiating equations (4) and (6) we have 

Vv(1) - I" -1  
dI (n - 1)! 

and 

d :De(I) - 1 
dl 7fi 

Therefore, from (5), 

I n-1 x/n 
'Vp - (7) 

(n - 1)! 

We have found the volume of P. Now we need to 
find an upper bound on the volume occupied by a single 
model. 
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Under the city-block metric an n-ball has the shape 
of  the region E in each quadrant. Since there are 2 n 
quadrants in n-dimensional Euclidean space, the 
volume of an n-ball of radius r is--using equation (4) 

(2r)" (8) 

n! 

Using lemma 1 and equations (5) and (8), we have 
that the ratio ~m/~p of the volume occupied by a 
model and the total volume is bounded by 

(216) "-1 

~ m  < (n - 1)! 

~ p  I n-1 X/n 

(n - 1)! 

= (26)0 1 

~n 

which is the required result. Q.E.D. 

N o t e s  

1. A similar opinion is expressed by Ullman (1986): "For many ob- 
jects color, texture, and motion play only a secondary role. In these 
cases, the objects are recognized by their shape properties. This 
is probably the most common and important aspect of visual 
recognition and therefore 'object recognition' is often taken to mean 
the visual recognition of objects based on their shape properties" 

2. Resenfeld's bibliographies are available by anonymous FTP from 
ADS.COM (in the VISION-LIST-ARCHIEVE directory). 
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C O L O R  F I G U R E S  

Fig. 1. Left: Image of a Crunchberries cereal box. Right: Three dimensional color histogram of the Crunchberries image with the black background 
substrated. 
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Fig. 2. Four views of Snoopy. 

Fig. 4. Modeling indexing experiment based on color cues (continued 
in figures 6 and 8). Each of the sixty-six models shown here is 
represented by its color histogram. 

Fig. 3. Histograms of the four views of Snoopy. 
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Fig. 5. The unknown objects. Each is identified with the model col- 
or histogram that best matches its own color histogram. Compared 
to the models the unknown objects are translated (Ajax), rotated about 
various axes (Frankenberry, Ajax) scaled (USA Flyer), occluded 
(Charmin), partly outside of the field of view (red, white striped shirt), 
and deformed (Mickey Mouse underwear). 

Fig. 10. Images from figure 5, each with the bottom third removed. 
These images and the images below are used in the occlusion ex- 
periment (see t able 4). 

Fig. 6 Life cereal box image and reduced resolution copies. Left: 
128x90 (1); Middle: 16×11 (2); Right 8x5 (30). The numbers in 
parenthesis indicate the rank of the match value for the Life cereal 
model. The middle image matches effectively, but the one on the 
right does not. 

Fig. 11. Images from figure 10, each with the right-hand third re- 
moved. The upper left-hand comer (four ninths of the original image) 
is left. 
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Fig. 16. Results of the ratio histogram backprojection step (2) of 
Histogram Backprojection, using figure 6 as the image and the striped 
blue and white shirt as the target. The blue hue is found in only a 
small area outside of the target, so it gives a strong response. White 
is found in many objects so it gives a weak response. 

Fig. 18. Results of the ratio histogram backprojection step (2) of 
Histogram Backprojection when the objects are occluded. Figure 6 
is the image and the striped blue and white shirt is the target. 

Fig. 17. Results of the convolution step (3) of Histogram Back- 
projection, for the same image as above. The results for all the models 
are shown in the image, each in the rectangle corresponding to the 
location of that model in the composite photo. When the algorithm 
successfully finds the object, the darkest black dot in the small image 
is in the same location within that image as the image in the 
component. 

Fig. 19. Results of the convolution step (3) of Histogram Back- 
projection, for the same image as above. The results of all the models 
are shown in the image, each in the rectangle corresponding to the 
location of that model in the composite photo. When the algorithm 
successfully finds the object, the darkest black dot in the small images 
is in the same location within that image as the image is in the com- 
posite. Compare with figure 17. 


