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Motivation

O Retrieve key frames and shots of video
containing particular object with ease,
speed and accuracy with which Google

retrieves web pages containing particular
words

O Investigate whether text retrieval
approach is applicable to object
recognition

O Visual analogy of word: vector quantizing
descriptor vectors




Benefits

O Matches are pre-computed so at run time
frames and shots containing particular
object can be retrieved with no delay

O Any object (or conjunction of objects)
occurring in a video can be retrieved even
though there was no explicit interest In
the object when the descriptors were built




Text Retrieval Approach

O Documents are parsed into words

O Words represented by stems

O Stop list to reject common words

O Remaining words assigned unique
Identifier

0 Document represented by vector of
weighted freguency of words

O Vectors organized in inverted files

O Retrieval returns documents with closest
(angle) vector to query



Viewpoint invariant description

O Two types of viewpoint covariant regions
computed for each frame

m Shape Adapted (SA) Mikolajczyk & Schmid
= Maximally Stable (MSER) Matas et al.

O Detect different image areas

O Provide complimentary representations of
frame

0 Computed at twice originally detected
region size to be more discriminating



Shape Adapted Reglons:
the Harris-Aftine Operator

O Elliptical shape adaptation about interest point

O Iteratively determine ellipse center, scale and
shape

O Scale determined by local extremum (across
scale) of Laplacian

O Shape determined by maximizing intensity
gradient isotropy over elliptical region

O Centered on corner-like features



FExamples of Harris-Atftine Operator

1400 K. Mikolajczyk and C. Schmid

Fig. 6. (a) Example of a 3D scene observed from significantly different viewpoints.
There are 14 inliers to a robustly estimated fundamental matrix, all of them correct.
(b} An image pairs for which our method fails. There exist, however, corresponding
points which we have selected manually.




Maximally Stable Regions

O Use Intensity watershed image
segmentation

O Select areas that are approximately
stationary as intensity threshold iIs varied

O Correspond to blobs of high contrast with
respect to surroundings



Examples of Maximally Stable Regions




Feature Descriptor

O Each elliptical affine invariant region represented
by 128 dimensional vector using SIFT descriptor




Noise Removal

O Information aggregated over sequence of frames

O Regions detected Iin each frame tracked using
simple constant velocity dynamical model and
correlation

O Region not surviving more than 3 frames are
rejected

O Estimate descriptor for region computed by
averaging descriptors throughout track



Noise Removal

eTracking region over 70 frames




Visual Vocabulary

O Goal: vector guantize descriptors into
clusters (visual words)

0 When a new frame is observed, the
descriptor of the new frame Is assighed to
the nearest cluster, generating matches
for all frames




Visual Vocabulary

O

O

Implementation: K-Means clustering

Regions tracked through contiguous frames and average
description computed

10% of tracks with highest variance eliminated, leaving about
1000 regions per frame

Subset of 48 shots (—10%) selected for clustering
Distance function: Mahalanobis

6000 SA clusters and 10000 MS clusters



Visual Vocabulary

(a)

A B B

Figure 2: Samples from the clusters corresponding to a single vi-
sal word. (a) Two examples of clusters of Shape Adapted regions.
(b} Two examples of clusters of Maximally Stable e gions.




Experiments - Setup

O Goal: match scene
locations within closed
world of shots

O Data:164 frames from
48 shots taken at 19
different 3D locations;

location




Experiments - Retrieval

O Entire frame is query

O Each of 164 frames as gquery region in turn
O Correct retrieval: other frames which show same

location
O Retrieval performance:

of relevant images
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Rank lies between 0 and 1.
Intuitively, it will be O if all
relevant images are returned
ahead of any others.

It will be .5 for random retrievals.

average normalized rank

N, = # of relevant images for
query image

N = size of image set

R, = rank of ith relevant image



Experiment - Results

PAorarage normalized rank of relewvant frames
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Experiments - Results

Average precision—recall curee

Pression
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Recall

Precision = # relevant images/total # of frames retrieved

Recall = # correctly retrieved frames/ # relevant frames




Stop List

O Top 5% and bottom 10%o
of frequent words are
stopped

Frequency of visual words over al keyframes Fraquancy of visual words over all keyframss
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Figure 5: Frequency of MS visual words among all 3768
keyframes of Run Lola Run (a) before, and (b) after, application
of a stoplist.

Figure & Matching stages. Top row: (beft) Query region and
{right) its close-up. Second row: Original word matches. Third
row: matches afier using stop-list. Last row: Final set of matches
after filtering on spatial consistency.



Spatial Consistency

O Matched region In retrieved frames have
similar spatial arrangement to outlined
region in query

O Retrieve frames using weighted freqguency
vector and re-rank based on spatial
consistency




More Results




Related Web Pages

O http://www.robots.ox.ac.uk/—vgg/researc
n/vgoogle/how/method/method_a.html

O http://www.robots.ox.ac.uk/—vgg/researc
n/vgoodgle/index.html
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