Review of Eigenvectors and Eigenvalues

from CliffsNotes Online
(No longer available)

Definition

The eigenvectors \mathbf{x} and eigenvalues λ of a matrix A satisfy

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

If A is an $n x n$ matrix, then x is an $n x 1$ vector, and λ is a constant.

The equation can be rewritten as $(A-\lambda I) \mathbf{x}=0$, where I is the $\mathrm{n} \times \mathrm{n}$ identity matrix.

Computing Eigenvalues

Since \mathbf{x} is required to be nonzero, the eigenvalues must satisfy
$\operatorname{det}(A-\lambda I)=0$
which is called the characteristic equation. Solving it for values of λ gives the eigenvalues of matrix A.

2 X 2 Example

$$
A=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right] \quad \text { so } A-\lambda I=\left[\begin{array}{cc}
1-\lambda & -2 \\
3 & -4-\lambda
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda)(-4-\lambda)-(3)(-2) \\
& =\lambda^{2}+3 \lambda+2
\end{aligned}
$$

Set $\lambda^{2}+3 \lambda+2$ to 0

Then $=\lambda=(-3+/-\operatorname{sqrt}(9-8)) / 2$

So the two values of λ are -1 and -2 .

Finding the Eigenvectors

Once you have the eigenvalues, you can plug them into the equation $A x=\lambda x$ to find the corresponding sets of eigenvectors \mathbf{x}.

$$
\left[\begin{array}{l}
1-2 \\
3-4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-1\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { so } \quad \begin{aligned}
& x_{1}-2 x_{2}=-x_{1} \\
& 3 x_{1}-4 x_{2}=-x_{2}
\end{aligned}
$$

(1) $2 x_{1}-2 x_{2}=0$
(2) $3 x_{1}-3 x_{2}=0$

These equations are not independent. If you multiply (2) by $2 / 3$, you get (1).

The simplest form of (1) and (2) is $x_{1}-x_{2}=0$, or just $x_{1}=x_{2}$.

Since $x_{1}=x_{2}$, we can represent all eigenvectors for eigenvalue -1 as multiples of a simple basis vector:
$E=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$, where t is a parameter.
So $\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top},\left[\begin{array}{ll}4\end{array}\right]^{\top},[30003000]^{\top}$ are all possible eigenvectors for eigenvalue -1.

For the second eigenvalue (-2) we get
$\left[\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=-2\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ so $\begin{array}{r}x_{1}-2 x_{2}=-2 x_{1} \\ 3 x_{1}-4 x_{2}=-2 x_{2}\end{array}$
(1) $3 x_{1}-2 x_{2}=0$
(2) $3 x_{1}-2 x_{2}=0$ so eigenvectors are of the form $t\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

Generalization for 2×2 Matrices

$$
\text { If } A=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b}
\end{array}\right] \text { then } \lambda=(\mathrm{a}+\mathrm{d})+/-\operatorname{sqrt}\left[(a+d)^{2}-4(a d-b c)\right]
$$

The discriminant (the part under the square root), can be simplified to get sqrt[(a-d) $\left.{ }^{2}+4 b c\right]$.

If $b=c$, this becomes $\operatorname{sqrt[}\left[(a-d)^{2}+(2 b)^{2}\right]$
Since the discriminant is the sum of 2 squares, it has real roots.
We will be seeing some 2×2 matrices where indeed $b=c$, so we'll be guaranteed a real-valued solution for the eigenvalues.

Another observation we will use:

For 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,
$\lambda_{1}+\lambda_{2}=\mathrm{a}+\mathrm{d}$, which is called trace (A) and
$\lambda_{1} \lambda_{2}=\mathrm{ad}-\mathrm{bc}$, which is called $\operatorname{det}(\mathrm{A})$.

Finally, zero is an eigenvalue of A if and only if A is singular and $\operatorname{det}(A)=0$.

