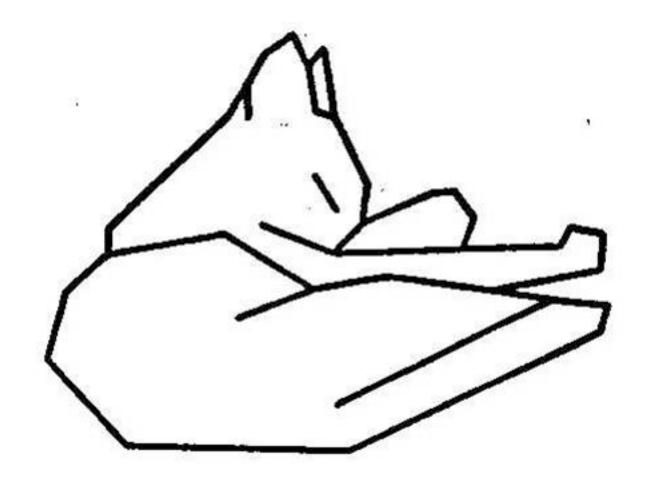
Edge Detection

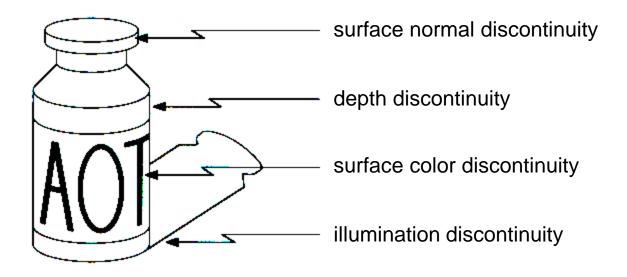
CSE 455 Linda Shapiro

Edge



Attneave's Cat (1954)

Origin of edges



Edges are caused by a variety of factors.

Characterizing edges

 An edge is a place of rapid change in the image intensity function

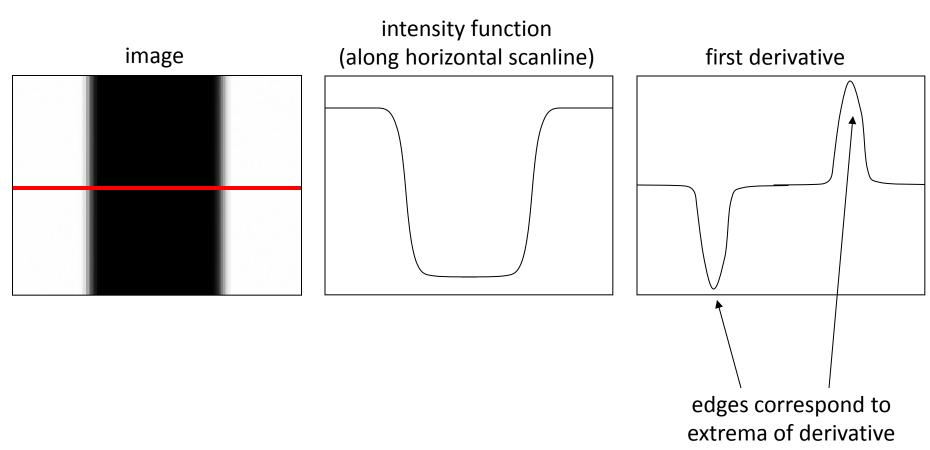
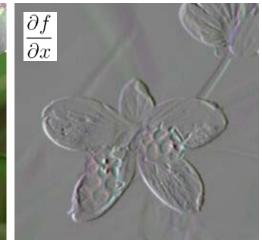


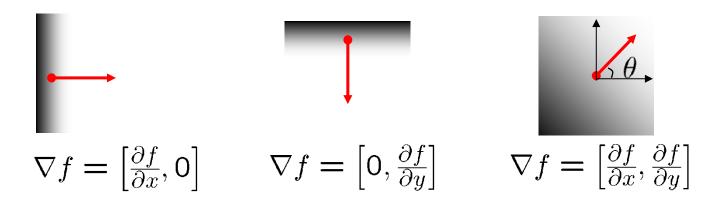
Image gradient



The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

• The gradient points in the direction of most rapid change in intensity

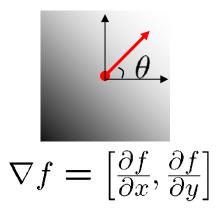


The discrete gradient

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, then take gradient
 - Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

Image gradient



$$\frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)$$

How would you implement this as a filter?

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

How does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Sobel operator

In practice, it is common to use:

Magnitude:

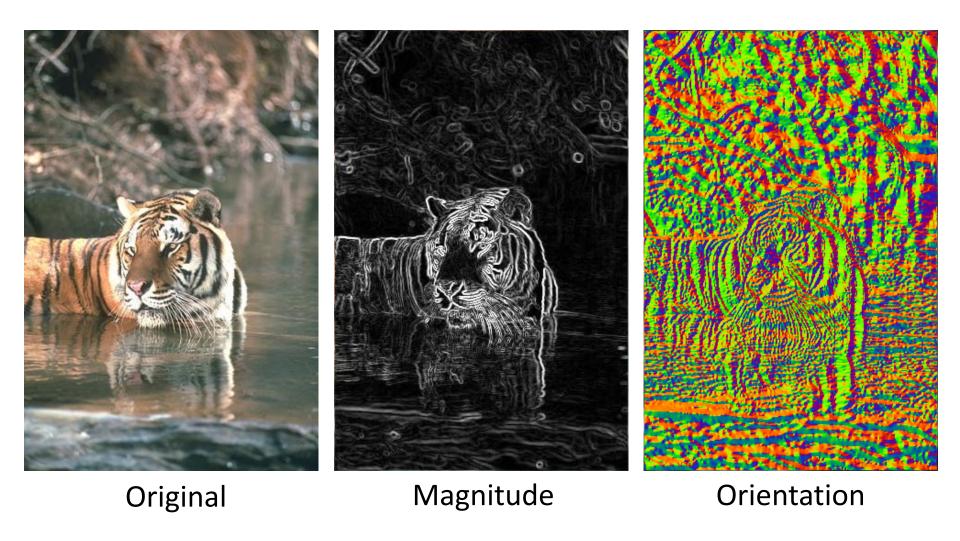
$$g = \sqrt{g_x^2 + g_y^2}$$

Orientation:

$$\Theta = \tan^{-1} \left(\frac{g_y}{g_x} \right)$$

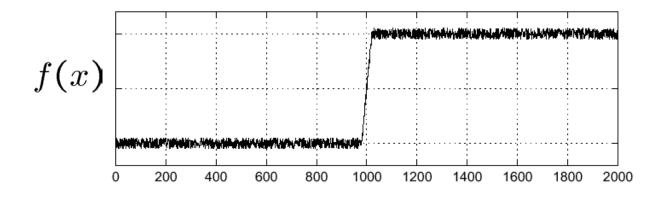
What's the C function? Use atan2

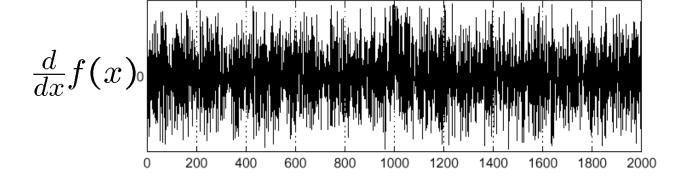
Sobel operator



Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal



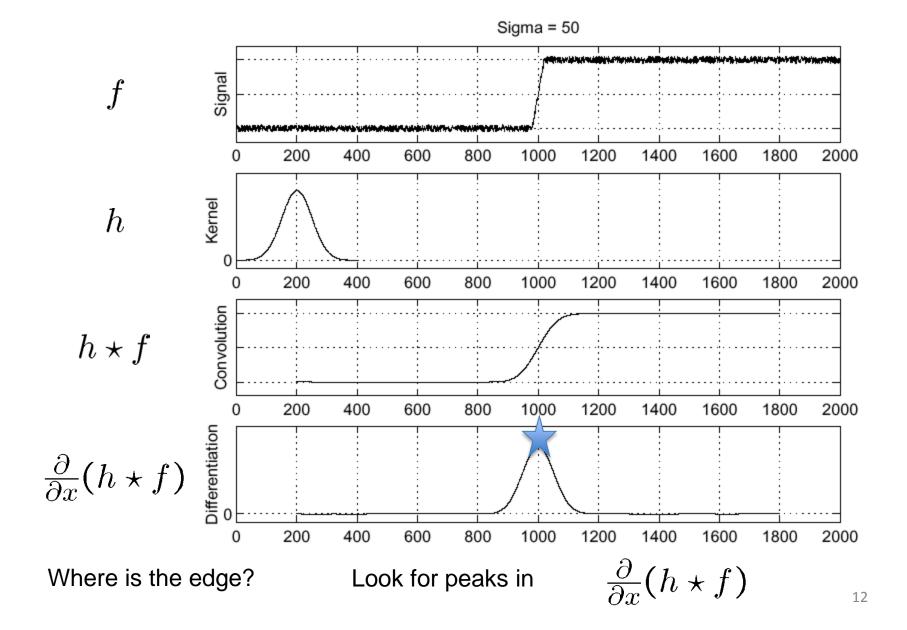


Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

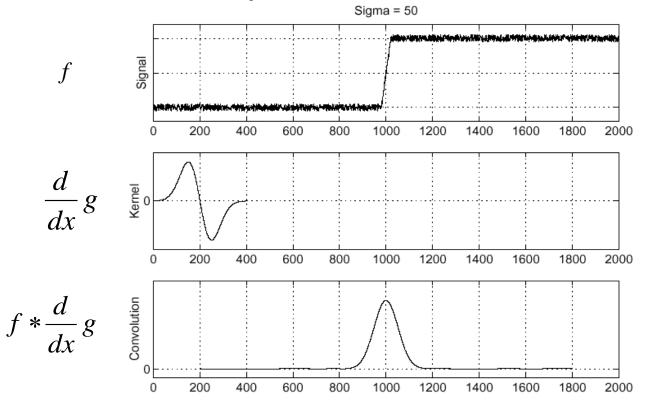


Derivative theorem of convolution

• Differentiation is convolution, and convolution is associative: $d_{(f * a) = f *} \underline{d}_{a}$

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

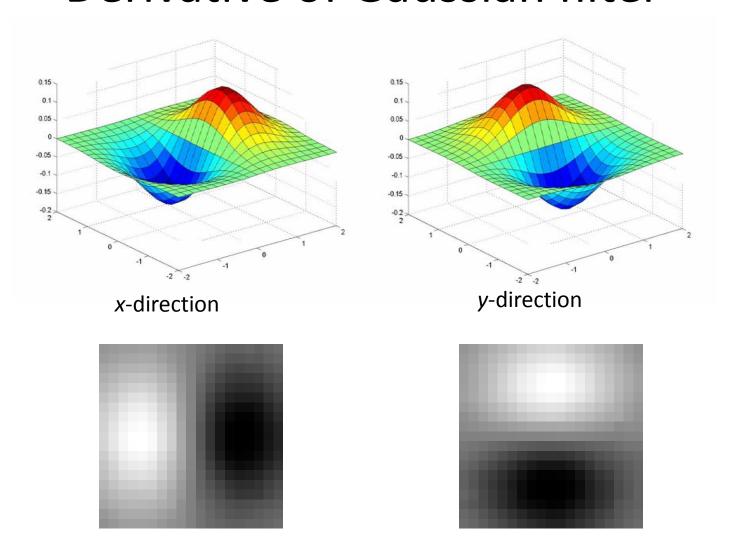
This saves us one operation:



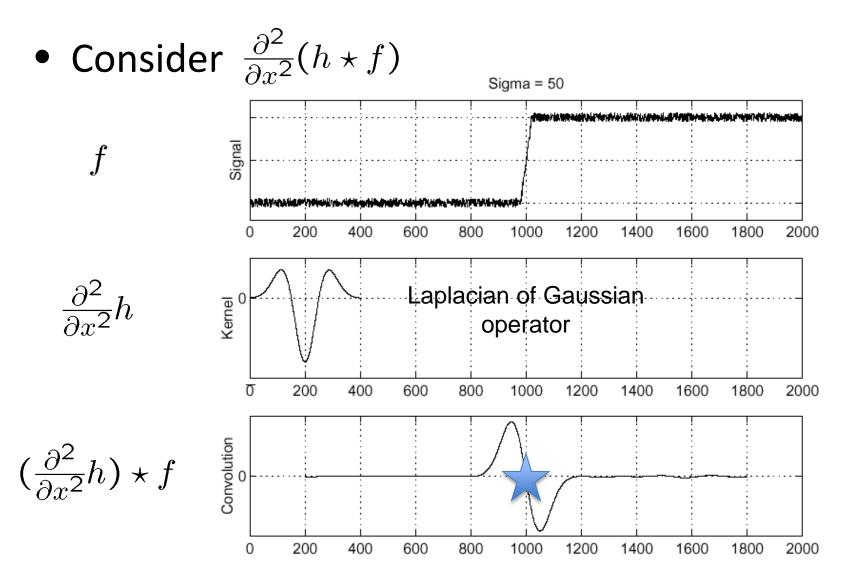
How can we find (local) maxima of a function?

Source: S. Seitz

Remember: Derivative of Gaussian filter

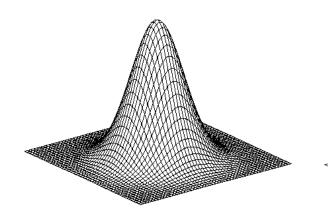


Laplacian of Gaussian



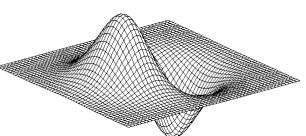
Zero-crossings of bottom graph

2D edge detection filters



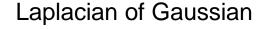
Gaussian

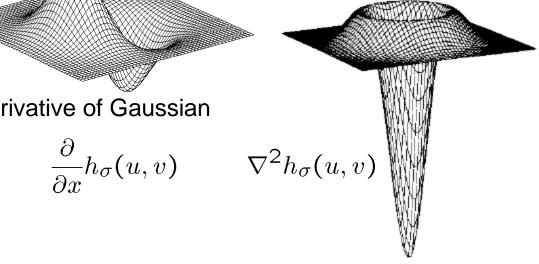
$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$



derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$





 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

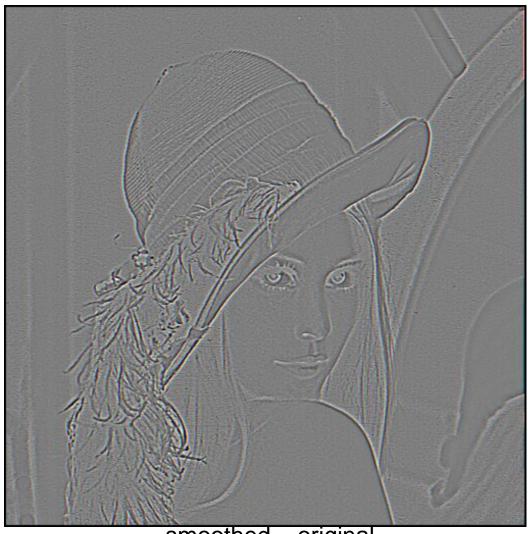
Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

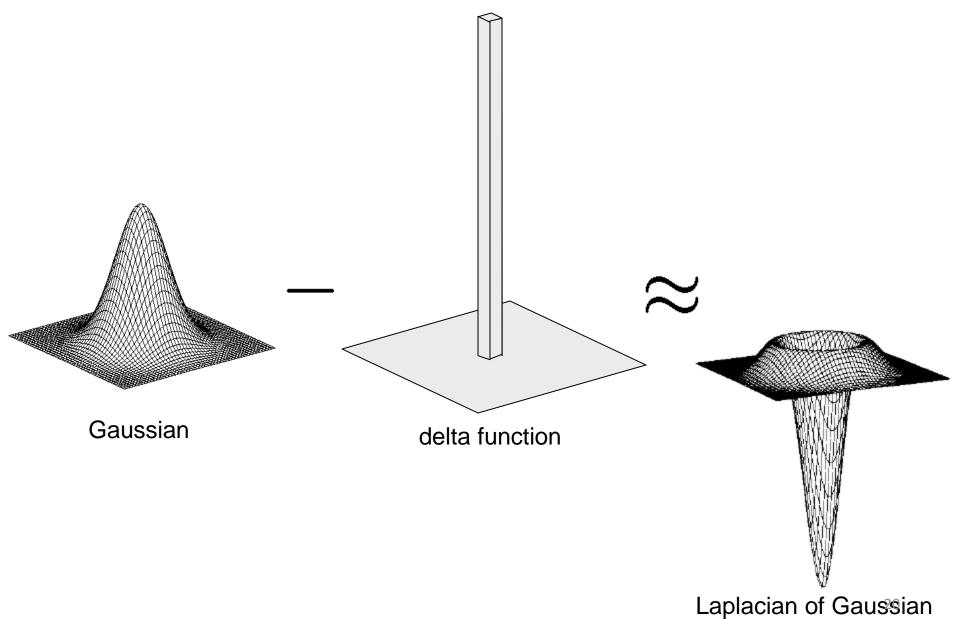
Edge detection by subtraction



Why does this work?

smoothed – original (scaled by 4, offset +128)

Gaussian - image filter



Using the LoG Function

- The LoG function will be
 - Zero far away from the edge
 - Positive on one side
 - Negative on the other side
 - Zero just at the edge
- It has simple digital mask implementation(s)
- So it can be used as an edge operator
- BUT, THERE'S SOMETHING BETTER

 This is probably the most widely used edge detector in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

original image (Lena)

norm of the gradient

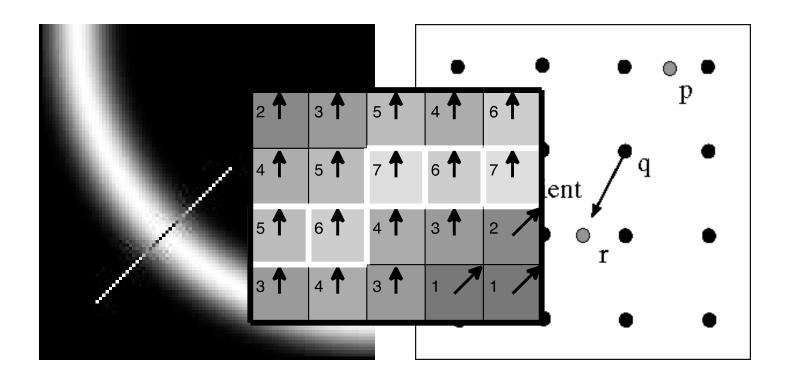
thresholding

Get Orientation at Each Pixel

theta = atan2(-gy, gx)

thinning (non-maximum suppression)

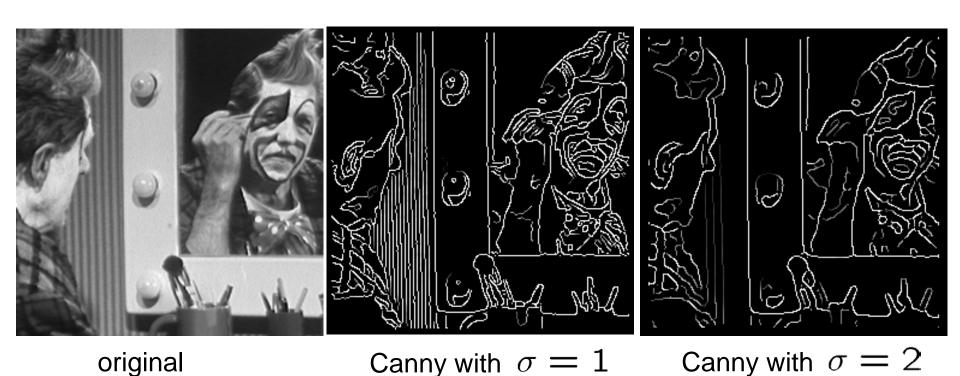
Non-maximum suppression



Check if pixel is local maximum along gradient direction

Canny Edges

Effect of σ (Gaussian kernel spread/size)



The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

An edge is not a line...

How can we detect lines?

Finding lines in an image

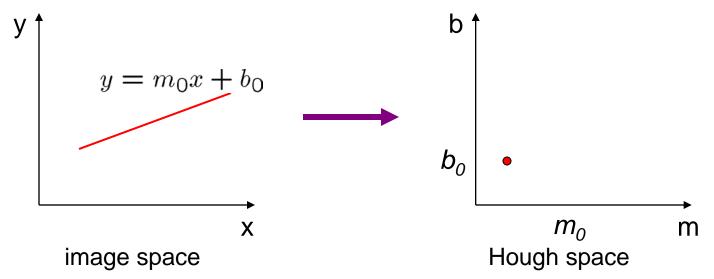
• Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

• Option 2:

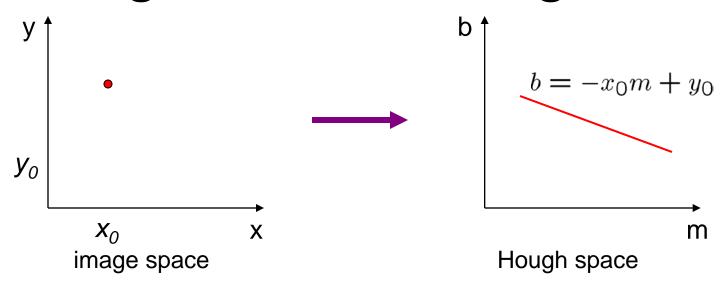
Use a voting scheme: Hough transform

Finding lines in an image



- Connection between image (x,y) and Hough (m,b) spaces
 - A line in the image corresponds to a point in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b

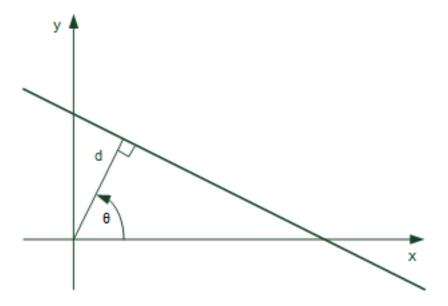
Finding lines in an image



- Connection between image (x,y) and Hough (m,b) spaces
 - A line in the image corresponds to a point in Hough space
 - To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
 - What does a point (x_0, y_0) in the image space map to?
 - A: the solutions of b = $-x_0m + y_0$
 - this is a line in Hough space

Hough transform algorithm

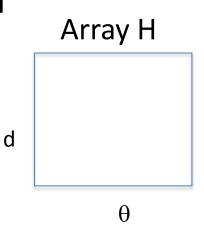
- Typically use a different parameterization $d = x cos\theta + y sin\theta$
 - d is the perpendicular distance from the line to the origin
 - $-\theta$ is the angle



Hough transform algorithm

- Basic Hough transform algorithm
 - 1. Initialize $H[d, \theta]=0$
 - 2. for each edge point I[x,y] in the image

for
$$\theta$$
 = 0 to 180
$$d = x cos\theta + y sin\theta$$
 H[d, θ] += 1



- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = x\cos\theta + y\sin\theta$
- What's the running time (measured in # votes)?

How big is the array H?

Example

gray-tone image

0	0	0	100	100
0	0	0	100	100
0	0	0	100	100
100	100	100	100	100
100	100	100	100	100

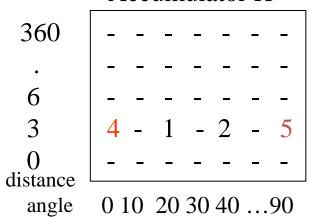
DQ

_	_	3	3	_
_	_	3	3	_
3	3	3	3	_
3 3	3	3	3	-
_	-	-	_	_

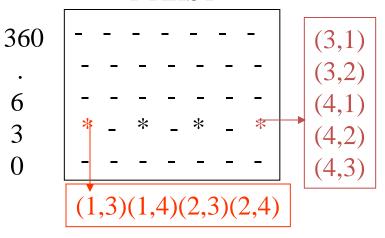
THETAQ

_	_	0	0	-
_	_	0	0	_
90	90 90	40	20	-
90	90	90	40	-
-	_	_	_	_

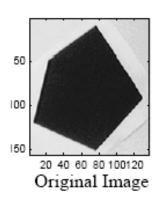
Accumulator H

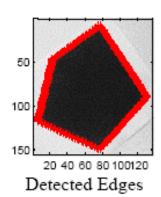


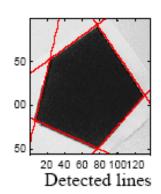
PTLIST

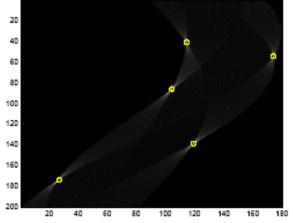


Examples









The vote histogram with the detected lines marked with 'o'

Image Analysis Group Hough Transform 11.69 x 8.26 in Chalmers University of Technology

Autumn 2000 Page 8

Examples cont

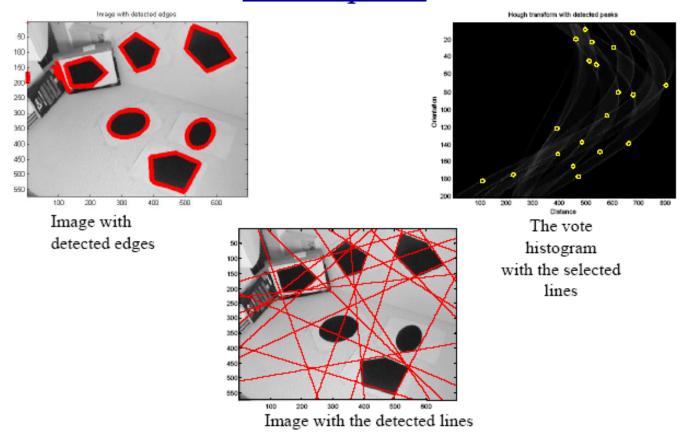


Image Analysis Group Chalmers University
Hough Transform of Technology

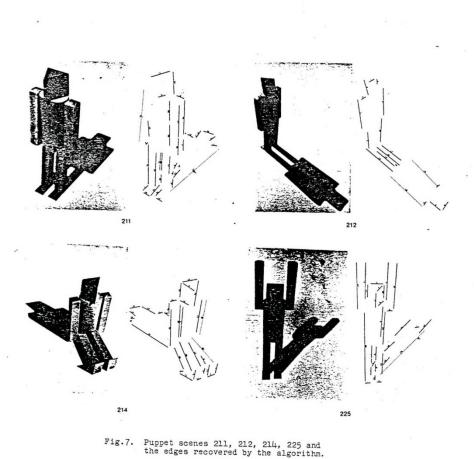
Autumn 2000 Page 9

How do you extract the line segments from the accumulators?

```
pick the bin of H with highest value V while V > value_threshold {
```

- order the corresponding pointlist from PTLIST
- merge in high gradient neighbors within 10 degrees
- create line segment from final point list
- zero out that bin of H
- pick the bin of H with highest value V }

Line segments from Hough Transform



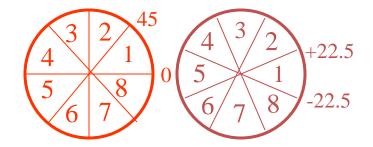
Extensions

- Extension 1: Use the image gradient
 - 1. same
 - 2. for each edge point I[x,y] in the image

```
compute unique (d, \theta) based on image gradient at (x,y) H[d, \theta] += 1
```

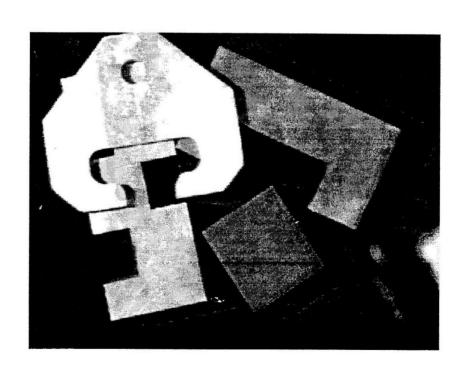
- 3. same
- 4. same
- What's the running time measured in votes?
- Extension 2
 - give more votes for stronger edges
- Extension 3
 - change the sampling of (d, θ) to give more/less resolution
- Extension 4
 - The same procedure can be used with circles, squares, or any other shape, How?
- Extension 5; the Burns procedure. Uses only angle, two different quantifications, and connected components with votes for larger one.

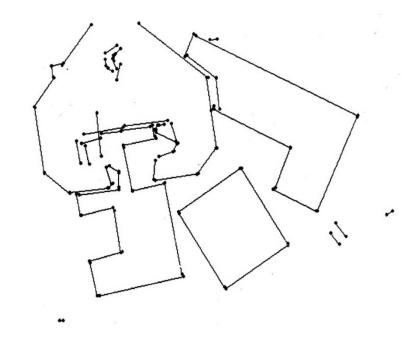
A Nice Hough Variant The Burns Line Finder



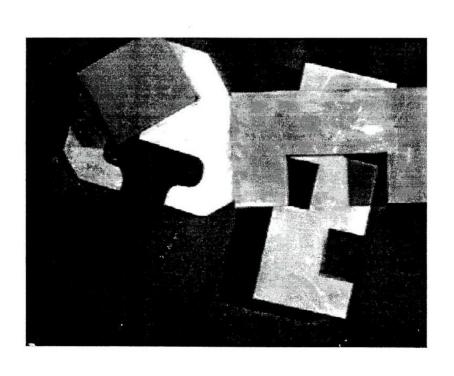
- 1. Compute gradient magnitude and direction at each pixel.
- 2. For high gradient magnitude points, assign direction labels to two symbolic images for two different quantizations.
- 3. Find connected components of each symbolic image.
 - Each pixel belongs to 2 components, one for each symbolic image.
 - Each pixel votes for its longer component.
 - Each component receives a count of pixels who voted for it.
 - The components that receive majority support are selected.

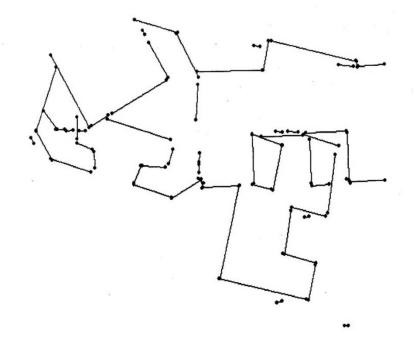
Burns Example 1





Burns Example 2





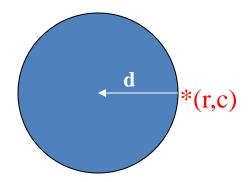
Hough Transform for Finding Circles

Equations:

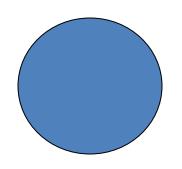
$$\begin{vmatrix} r = r0 + d \sin \theta \\ c = c0 - d \cos \theta \end{vmatrix}$$

r, c, d are parameters

Main idea: The gradient vector at an edge pixel points to the center of the circle.

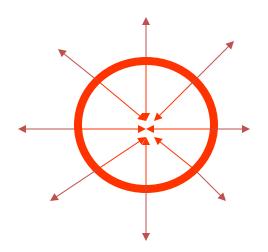


Why it works



Filled Circle:

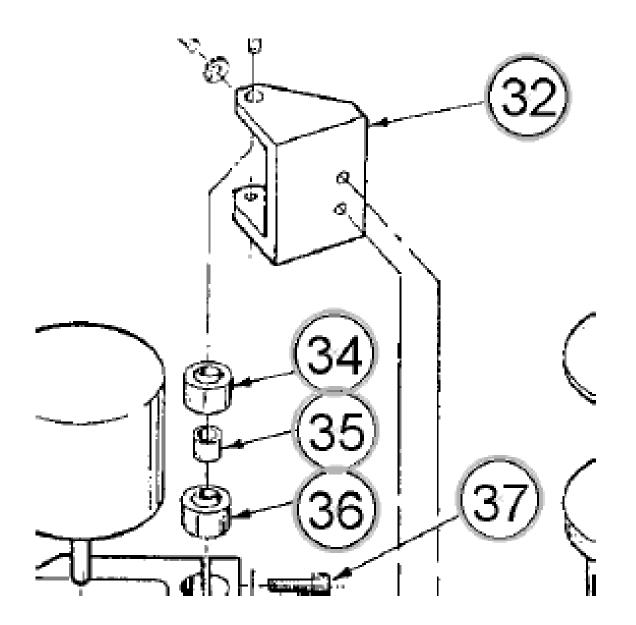
Outer points of circle have gradient direction pointing to center.



Circular Ring:

Outer points gradient towards center. Inner points gradient away from center.

The points in the away direction don't accumulate in one bin!



Finding lung nodules (Kimme & Ballard)

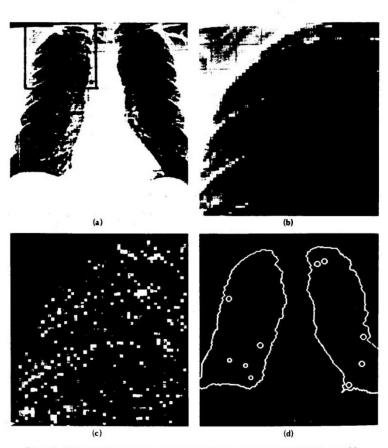


Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c) Accumulator array for r = 3. (d) Results of maxima detection.