Assignment 4

Face Detection

Overview

- large number of initial weak classifiers
- each weak classifier computes one rectangular feature
- the program computes the best threshold and polarity for each weak classifier
- Adaboost selects a subset of these classifiers and assigns a weight to each one
- Final classifications of boxes in test images are based on a combination of the selected ones.

Initializefeatures

- Given in the code base
- Initializes all weak classifiers
- Chooses the upper left corner (x,y) and the height and width h and w randomly (but from 0 to 1)
- Chooses type of box
 - vertical 2-box
 - horizontal 2-box
 - vertical 3-box
- Sets area

ComputeTrainingSetFeatures

- Given in the code base as a shell
- Calls two methods that you code
 - IntegralImage: computes the integral image for each training patch
 - ComputeFeatures: uses the integral image for each training patch to compute features for that patch, one for each weak classifier, and puts them in an array called features.

AdaBoost

- Given in the code base
- Starts with uniform weights on training patches
- For each weak classifier
 - sorts the feature values in ascending order
 - results of sort go in featureSort and featureSortIdx
 - selects numWeakClassifiers weak classifiers through calling FindBestClassifier for all candidates and selecting the ones with lowest errors
- updates weights on patches in dataWeights
- computes current total error for the training data and scores for each sample for debug purposes

Initializing features

Function ComputeTrainingSetFeatures

```
for(i=0;i<numTrainingExamples;i++)</pre>
  ł
           ....
        ComputeFeatures(integralImage, 0, 0, patchSize,
        &(features[i*numWeakClassifiers]), weakClassifiers, numWeakClassifiers,
        patchSize);
                                                                                      features for
                                                                     Different
                                                                                       1<sup>st</sup> training
        feature offset1: i * numWeakClassifiers
                                                                     classifiers
                                                                                       example
                                                     offset1
Function ComputeFeatures
                                                                                      2<sup>nd</sup> training
fdr(i=0;i<numWeakClassifiers;i++)
                                                     offset2
                                                                                      example
       features[i] += weakClassifiers[i].m_BoxSign[j]*
         sum/((double) (size*size));
  }
       feature offset2: offset1 + i
                                                                                       last training
                                                                     Different
                                                                                      example
```

features iterates over classifiers first, and then training examples.

classifiers

Feature Sorting

featureSort is only for ONE classifier at a time.

findBestClassifier

- you write it
- It is called by AdaBoost with a candidate classifier
- It is given the sort index which indexes into
 - features
 - weights
 - training labels
- Use it to go through the training samples (in sorted order), compute error for the classifier using the formula from the lecture (slides 30-32).
- Return threshold, classifier weight, and polarity

Using the Sort Index: Example

samples labels features weights

index

The feature values are for one particular feature (classifier).

The index tells you the sorted order of the features.

Setting the Polarity

error = min (BG + (AFS – FS), FS + (ABG –BG)) left right

- When left < right, set polarity to 0
- Else set polarity to 1

Threshold and Polarity Example error = min (BG + (AFS – FS), FS + (ABG – BG))

samples	0	1	2	3	4	initializa
labels	F	В	F	В	В	Initialize $\Delta FS = 0$
features	6	3	10	2	1	ABG = 0
weight	1/5	1/5	1/5	1/5	1/5	besterr = 999999
index	4	3	1	0	2	

AFS becomes sum of face sample weights = 2/5; ABG = 3/5

step 0: idx = 4; FS stays 0; BG = 1/5
error = min(1/5 + (2/5-0), 0 + (3/5-1/5))= 2/5
besterr = 2/5; bestpolarity = 1; bestthreshold=1

step 1: idx = 3; FS stays 0; BG = 2/5
error = min(2/5 + (2/5-0), 0 + (3/5-2/5))= 1/5
besterr = 1/5; bestpolarity = 1; bestthreshold=2

Threshold and Polarity Example error = min (BG + (AFS – FS), FS + (ABG – BG))

samples	0	1	2	3	4	
labels	F	В	F	В	В	
features	6	3	10	2	1	
weight	1/5	1/5	1/5	1/5	1/5	
index	4	3	1	0	2	

initialize AFS = 0 ABG = 0 besterr = 999999

step 2: idx = 1; FS stays 0; BG = 3/5
error = min(3/5 + (2/5-0), 0 + (3/5-3/5))= 0
besterr = 0; bestpolarity = 1; bestthreshold=3

step 3: idx = 0; FS = 1/5; BG = 3/5
error = min(3/5 + (2/5-1/5), 1/5 + (3/5-3/5))= 1/5
NO CHANGE

step 4: idx = 2; FS = 2/5; BG = 3/5
error = min(3/5 + (2/5-2/5), 2/5+ (3/5-3/5))= 2/5
NO CHANGE

RESULT

