



- Queries
- Commercial Systems
- Retrieval Features
- Indexing in the FIDS System
- Lead-in to Object Recognition



## Content-based Image Retrieval (CBIR)

Searching a large database for images that *match* a query:

- What kinds of databases?
- What kinds of queries?
- What constitutes a match?
- How do we make such searches efficient?

### **Applications**

- Art Collections
   e.g. Fine Arts Museum of San Francisco
- Medical Image Databases
   CT, MRI, Ultrasound, The Visible Human
- Scientific Databasese.g. Earth Sciences
- General Image Collections for Licensing Corbis, Getty Images
- The World Wide Web Google, Microsoft, etc

### What is a query?

- an image you already have
- a rough sketch you draw
- a symbolic description of what you want
   e.g. an image of a man and a woman on a beach



# Some Systems You Can Try

- Corbis sells sold high-quality images for use in advertising, marketing, illustrating, etc. Corbis was sold to a Chinese company, but
- Getty images now provides the image sales.
- http://www.gettyimages.com/search/2/image?excludenudity=true&sort=best

# Google Image

Google Images

http://www.google.com/imghp

Try the camera icon.

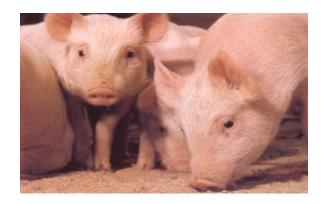
# Microsoft Bing

http://www.bing.com/



## Problem with Text-Based Search

- Retrieval for pigs for the color chapter of my book
- Small company (was called Ditto)
- Allows you to search for pictures from web pages



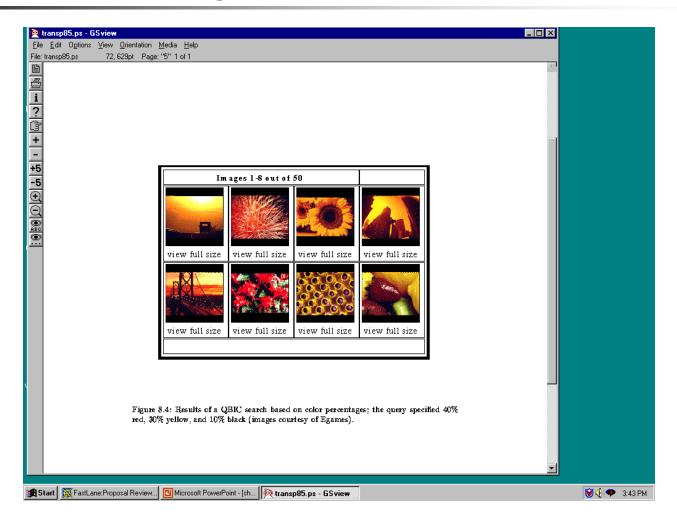


# Features

- Color (histograms, gridded layout, wavelets)
- Texture (Laws, Gabor filters, local binary pattern)
- Shape (first segment the image, then use statistical or structural shape similarity measures)
- Objects and their Relationships

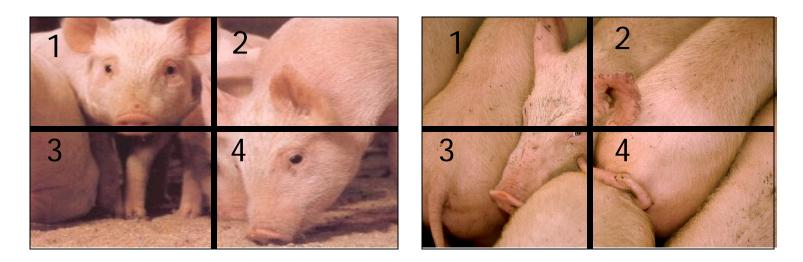
This is the most powerful, but you have to be able to recognize the objects!

## Color Histograms



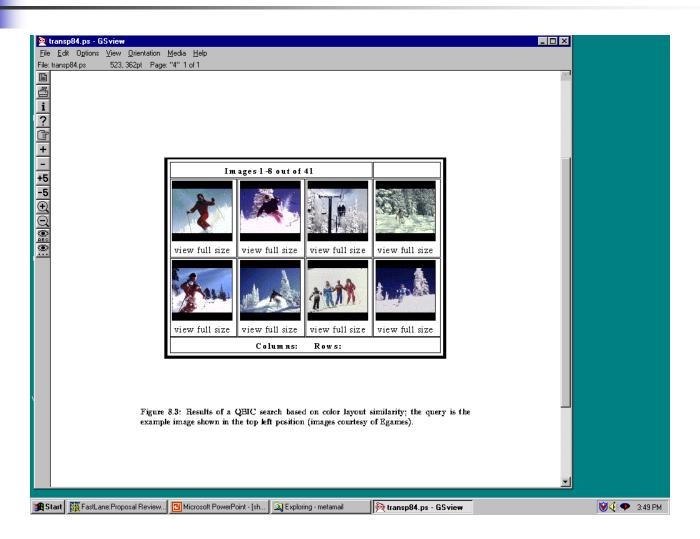
## Gridded Color

Gridded color distance is the sum of the color distances in each of the corresponding grid squares.



What color distance would you use for a pair of grid squares?

# Color Layout (IBM's Gridded Color)

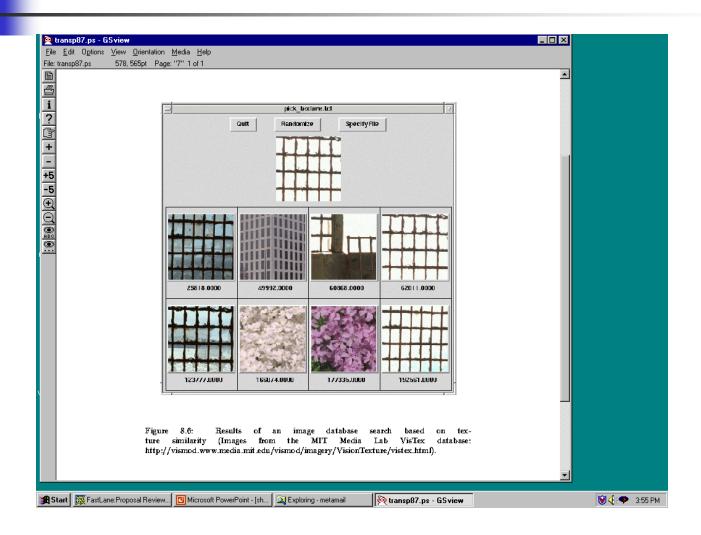




### Texture Distances

- Pick and Click (user clicks on a pixel and system retrieves images that have in them a region with similar texture to the region surrounding it.
- Gridded (just like gridded color, but use texture).
- Histogram-based (e.g. compare the LBP histograms).

### Laws Texture

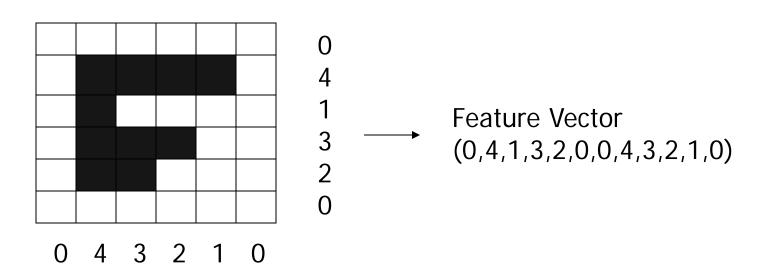




## **Shape Distances**

- Shape goes one step further than color and texture.
- It requires identification of regions to compare.
- There have been many shape similarity measures suggested for pattern recognition that can be used to construct shape distance measures.



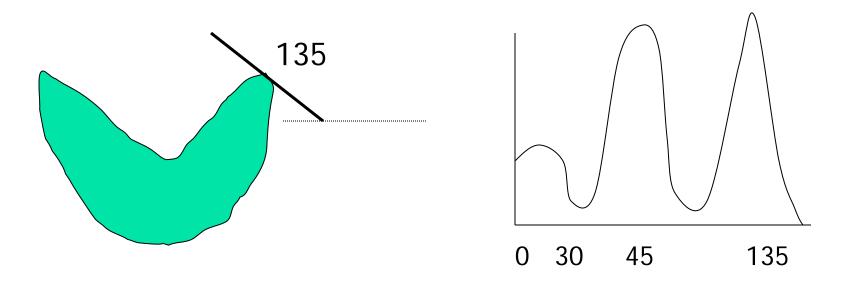


In projection matching, the horizontal and vertical projections form a histogram.

What are the weaknesses of this method? strengths?



# Global Shape Properties: Tangent-Angle Histograms



Is this feature invariant to starting point? Is it invariant to size, translation, rotation?



## **Boundary Matching**

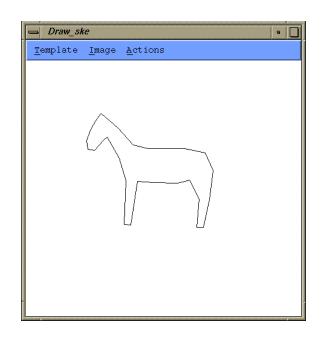
- Fourier Descriptors
- Sides and Angles
- Elastic Matching

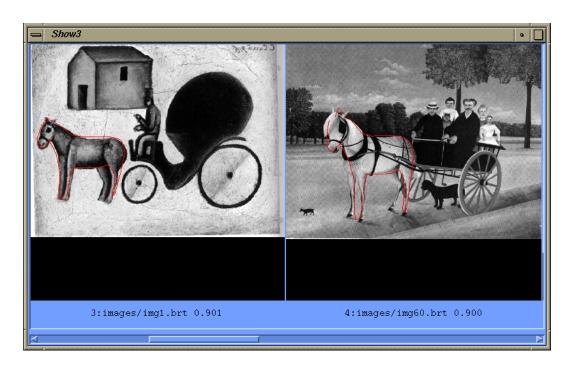
The distance between query shape and image shape has two components:

- 1. energy required to deform the query shape into one that best matches the image shape
- 2. a measure of how well the deformed query matches the image



## Del Bimbo Elastic Shape Matching





query

retrieved images



### Regions and Relationships

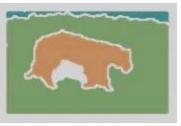
- Segment the image into regions
- Find their properties and interrelationships
- Construct a graph representation with nodes for regions and edges for spatial relationships
- Use graph matching to compare images

Like what?



## Blobworld (Carson et al, 1999)







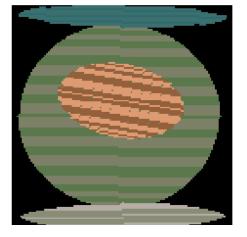


- Segmented the query (and all database images) using EM on color+texture
- Allowed users to select the most important region and what characteristics of it (color, texture, location)
- Asked users if the background was also important

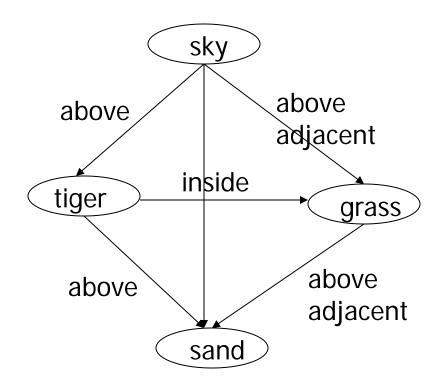
# Tiger Image as a Graph (motivated by Blobworld)



image

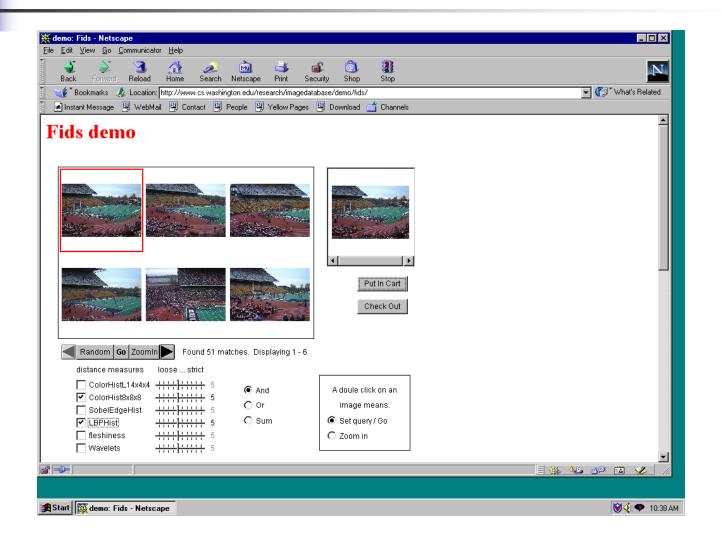


abstract regions



#### Andy Berman's FIDS System

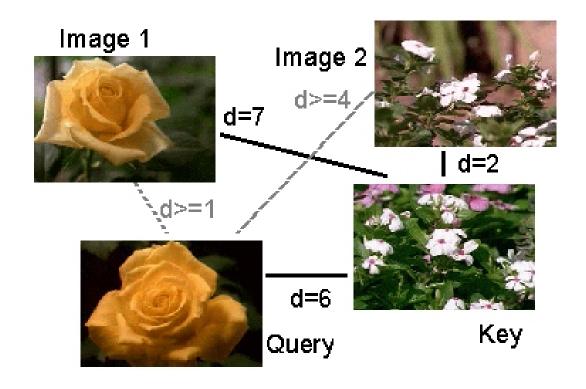
multiple distance measures
Boolean and linear combinations
efficient indexing using images as keys



#### Andy Berman's FIDS System:



Use of key images and the triangle inequality for efficient retrieval. d(I,Q) >= |d((I,K) - d(Q,K))|



#### Andy Berman's FIDS System:



#### Bare-Bones Triangle Inequality Algorithm

#### Offline

- 1. Choose a small set of key images
- 2. Store distances from database images to keys

#### Online (given query Q)

- 1. Compute the distance from Q to each key
- 2. Obtain lower bounds on distances to database images
- 3. Threshold or return all images in order of lower bounds





#### Flexible Image Database System: Example



An example from our system using a simple color measure.

# images in system: 37,748 threshold: 100 out of 1000

# images eliminated: 37,729

#### Andy Berman's FIDS System:



#### Bare-Bones Algorithm with Multiple Distance Measures

#### Offline

- 1. Choose key images for each measure
- 2. Store distances from database images to keys for all measures

#### Online (given query Q)

- 1. Calculate lower bounds for each measure
- 2. Combine to form lower bounds for composite measures
- 3. Continue as in single measure algorithm



## Demo of FIDS

http://www.cs.washington.edu/research /imagedatabase/demo/

- Try this and the other demos on the same page.
- First, in the Java control panel, add a site exception: http://imagedatabase.cs.washington.edu/demo/fids/
- Then make sure you are running 32 bit Firefox (or IE) with 32 bit Java (64 not tested)
- For IE, may have to enable Java plugins

## Weakness of Low-level Features

Can't capture the high-level concepts

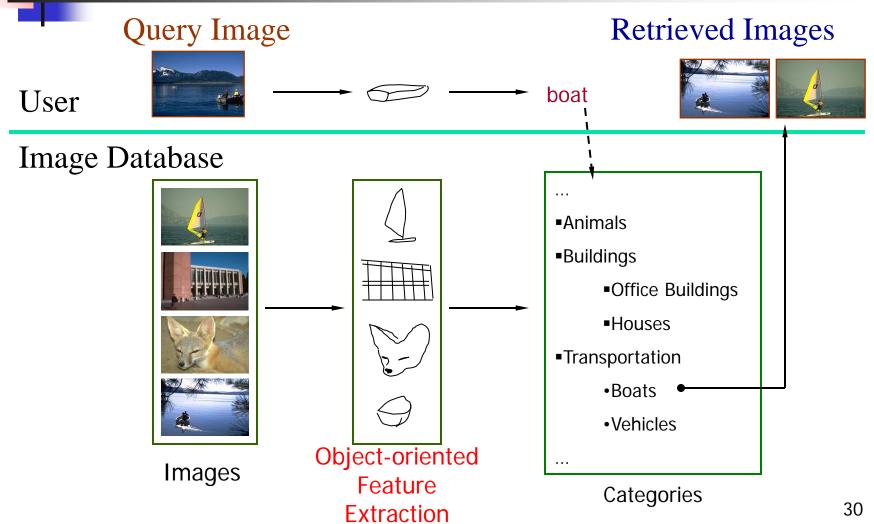








### Research Objective





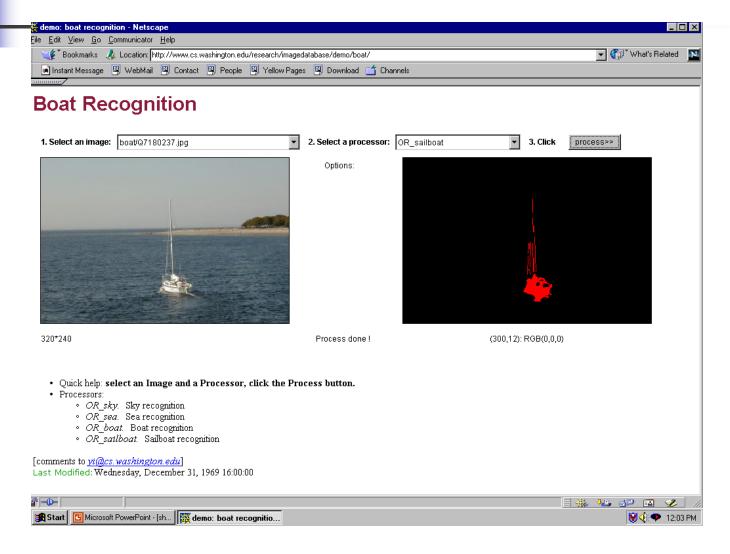
## Overall Approach

Develop object recognizers for common objects

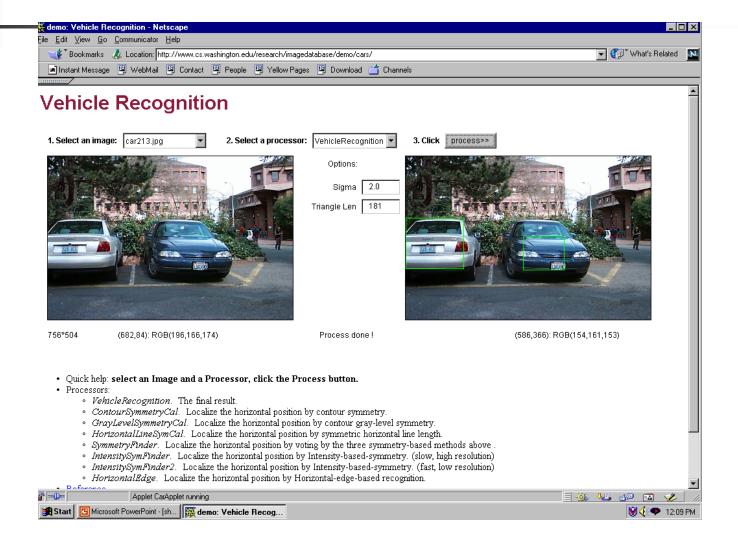
 Use these recognizers to design a new set of both low- and mid-level features

 Design a learning system that can use these features to recognize classes of objects

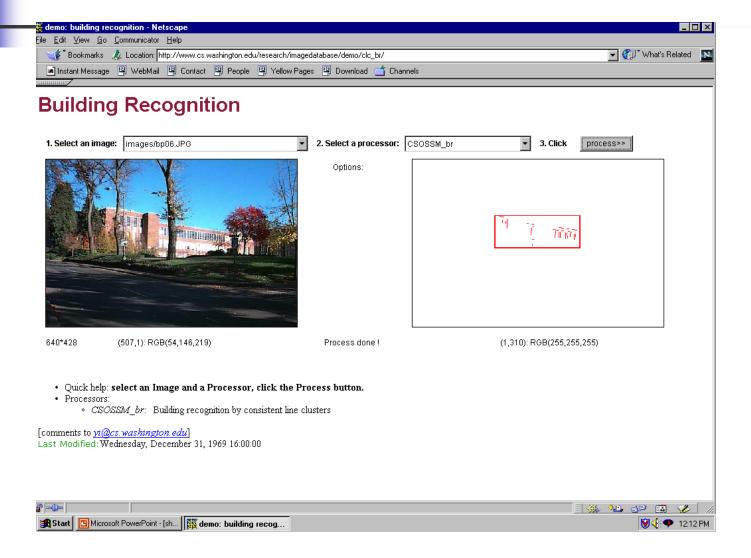
## **Boat Recognition**



# Vehicle Recognition



# **Building Recognition**





# Building Features: Consistent Line Clusters (CLC)

A Consistent Line Cluster is a set of lines that are homogeneous in terms of some line features.

**■Color-CLC**: The lines have the same color feature.

Orientation-CLC: The lines are parallel to each other or converge to a common vanishing point.

Spatially-CLC: The lines are in close proximity to each other.

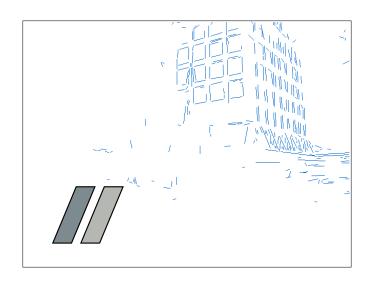
# Color-CLC

- Color feature of lines: color pair (c<sub>1</sub>,c<sub>2</sub>)
- Color pair space:
   RGB (256<sup>3</sup>\*256<sup>3</sup>) Too big!
   Dominant colors (20\*20)
- Finding the color pairs:
   One line → Several color pairs
- Constructing Color-CLC: use clustering











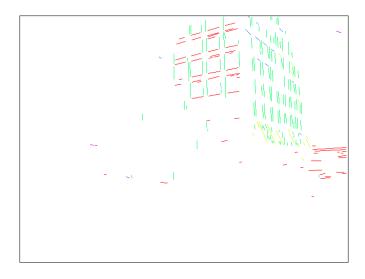
#### Orientation-CLC

- The lines in an Orientation-CLC are parallel to each other in the 3D world
- The parallel lines of an object in a 2D image can be:
  - Parallel in 2D
  - Converging to a vanishing point (perspective)



#### Orientation-CLC







## Spatially-CLC

- Vertical position clustering
- Horizontal position clustering



## **Building Recognition by CLC**

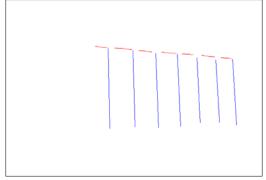
#### Two types of buildings → Two criteria

- Inter-relationship criterion
- Intra-relationship criterion





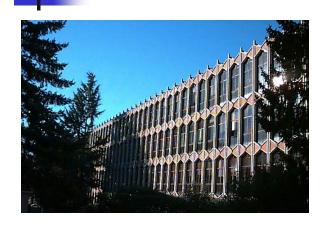






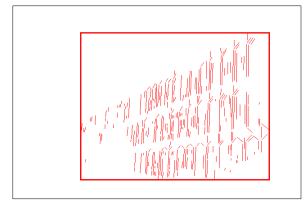
- Object Recognition
  - 97 well-patterned buildings (bp): 97/97
  - 44 not well-patterned buildings (bnp): 42/44
  - 16 not patterned non-buildings (nbnp): 15/16 (one false positive)
  - 25 patterned non-buildings (nbp): 0/25
- CBIR

#### Well-Patterned Buildings

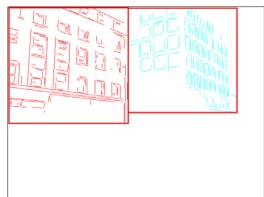












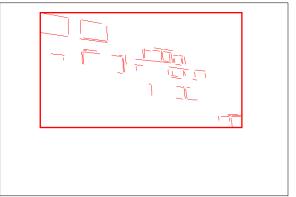
#### Non-Well-Patterned Buildings













#### Non-Well-Patterned Non-Buildings

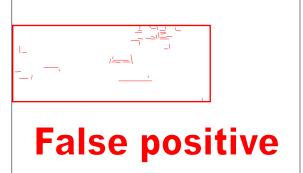










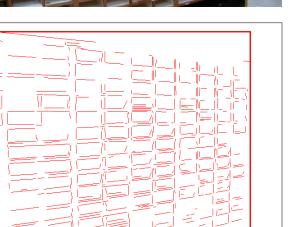




# **Experimental Evaluation**Well-Patterned Non-Buildings (false positives)











# Experimental Evaluation (CBIR)

|              | Total Positive<br>Classification<br>(#) | Total<br>Negative<br>Classification<br>(#) | False<br>positive<br>(#) | False<br>negative<br>(#) | Accuracy<br>(%) |
|--------------|-----------------------------------------|--------------------------------------------|--------------------------|--------------------------|-----------------|
| Arborgreens  | 0                                       | 47                                         | 0                        | 0                        | 100             |
| Campusinfall | 27                                      | 21                                         | 0                        | 5                        | 89.6            |
| Cannonbeach  | 30                                      | 18                                         | 0                        | 6                        | 87.5            |
| Yellowstone  | 4                                       | 44                                         | 4                        | 0                        | 91.7            |

#### Experimental Evaluation (CBIR)

False positives from Yellowstone







