CSE 455
 SVMs and Neural Nets

Linda Shapiro
Professor of Computer Science \& Engineering
Professor of Electrical Engineering

Kernel Machines

- A relatively new learning methodology (1992) derived from statistical learning theory.
- Became famous when it gave accuracy comparable to neural nets in a handwriting recognition class.
- Was introduced to computer vision researchers by Tomaso Poggio at MIT who started using it for face detection and got better results than neural nets.
- Has become very popular and widely used with packages available.

Support Vector Machines (SVM)

- Support vector machines are learning algorithms that try to find a hyperplane that separates the different classes of data the most.
- They are a specific kind of kernel machines based on two key ideas:
- maximum margin hyperplanes
- a kernel 'trick'

The SVM Equation

- $y_{\text {SVM }}\left(x_{q}\right)=\underset{c}{\operatorname{argmax}} \sum_{i=1, \mathrm{~m}} \alpha_{\mathrm{i}, \mathrm{C}} \mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{q}}\right)$
- x_{q} is a query or unknown object
- c indexes the classes
- there are m support vectors x_{i} with weights $\alpha_{i, c}$, $\mathrm{i}=1$ to m for class c
- K is the kernel function that compares x_{i} to x_{q}
*** This is for multiple class SVMs with support vectors for every class; we'll see a simpler equation for 2 class.

Maximal Margin (2 class problem)

In 2D space, a hyperplane is a line.

In 3D space, it is a plane.

Find the hyperplane with maximal margin for all the points. This originates an optimization problem which has a unique solution.

Support Vectors

- The weights α_{i} associated with data points are zero, except for those points closest to the separator.
- The points with nonzero weights are called the support vectors (because they hold up the separating plane).
- Because there are many fewer support vectors than total data points, the number of parameters defining the optimal separator is small.

A Geometric Interpretation

Kernels

- A kernel is just a similarity function. It takes 2 inputs and decides how similar they are.
- Kernels offer an alternative to standard feature vectors. Instead of using a bunch of features, you define a single kernel to decide the similarity between two objects.

Kernels and SVMs

- Under some conditions, every kernel function can be expressed as a dot product in a (possibly infinite dimensional) feature space (Mercer's theorem)
- SVM machine learning can be expressed in terms of dot products.
- So SVM machines can use kernels instead of feature vectors.

The Kernel Trick

The SVM algorithm implicitly maps the original data to a feature space of possibly infinite dimension in which data (which is not separable in the original space) becomes separable in the feature space.

Kernel Functions

- The kernel function is designed by the developer of the SVM.
- It is applied to pairs of input data to evaluate dot products in some corresponding feature space.
- Kernels can be all sorts of functions including polynomials and exponentials.
- Simplest is just the plain dot product: xi•xj
- The polynomial kernel $K(x i, x j)=(x i \bullet x j+1)^{p}$, where p is a tunable parameter.

Kernel Function used in our 3D Computer Vision Work

- $k(A, B)=\exp \left(-\theta^{2}{ }_{A B} / \sigma^{2}\right)$
- A and B are shape descriptors (big vectors).
- θ is the angle between these vectors.
- σ^{2} is the "width" of the kernel.

What does SVM learning solve?

- The SVM is looking for the best separating plane in its alternate space.
- It solves a quadratic programming optimization problem

$$
\begin{aligned}
& \quad \underset{\alpha}{\operatorname{argmax}} \sum_{\mathrm{j}} \alpha_{\mathrm{j}}-1 / 2 \sum_{\mathrm{j}, \mathrm{k}} \alpha_{\mathrm{j}} \alpha_{\mathrm{k}} y_{\mathrm{j}} \mathrm{y}_{\mathrm{k}}\left(\mathbf{x}_{\mathrm{j}} \bullet \mathrm{x}_{\mathrm{k}}\right) \\
& \text { subject to } \alpha_{\mathrm{j}}>0 \text { and } \sum \alpha_{\mathrm{j}} y_{\mathrm{j}}=0 .
\end{aligned}
$$

- The equation for the separator for these optimal α_{j} is

$$
h(x)=\operatorname{sign}\left(\sum_{j} \alpha_{j} y_{j}\left(x \bullet x_{j}\right)-b\right)
$$

Simple Example of Classification

- $K(A, B)=A \bullet B$
- known positive class points $\{(3,1),(3,-1),(6,1),(6,-1)\}$
- known negative class points $\{(1,0),(0,1),(0,-1),(-1,0)\}$
- support vectors: $s=\{(1,0),(3,1),(3,-1)\}$ with weights α = -3.5, .75, . 75
- classifier equation: $f(x)=\operatorname{sign}\left(\Sigma_{i}\left[\alpha_{i}^{*} K\left(s_{i}, x\right)\right]-b\right) \quad b=2$

$$
f(1,1)=\operatorname{sign}\left(\sum_{i} \alpha_{i} s_{i} \bullet(1,1) \quad-2\right)
$$

$$
=\operatorname{sign}\left(.75^{*}(3,1) \bullet(1,1)+.75^{*}(3,-1) \bullet(1,1)+(-3.5)^{*}(1,0) \bullet(1,1)-2\right)
$$

$$
=\operatorname{sign}(1-2)=\operatorname{sign}(-1)=- \text { negative class }
$$

Time taken to build model: 0.15 seconds

```
Correctly Classified Instances 319 83.5079 %
Incorrectly Classified Instances 63 16.4921 %
Kappa statistic 0.6685
Mean absolute error 0.1649
Root mean squared error 0.4061
Relative absolute error 33.0372 %
Root relative squared error 81.1136%
Total Number of Instances 382
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
```



```
    0.944}00.278 0.78 0.944 0.844 0.833 dor
W Avg. 0.835 0.17 0.851
=== Confusion Matrix ===
    a b <-- classified as
135 52 | a = cal
    11 184 | b = dor
```


Neural Net Learning

- Motivated by studies of the brain.
- A network of "artificial neurons" that learns a function.
- Doesn't have clear decision rules like decision trees, but highly successful in many different applications. (e.g. face detection)
- We use them frequently in our research.
- I'll be using algorithms from
http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf

10^{11} neurons of >20 types, 10^{14} synapses, $1 \mathrm{~ms}-10 \mathrm{~ms}$ cycle time Signals are noisy "spike trains" of electrical potential

Output is a "squashed" linear function of the inputs:

$$
a_{i} \leftarrow g\left(i n_{i}\right)=g\left(\sum_{j} W_{j, i} a_{j}\right)
$$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Common activation functions φ

Simple Feed-Forward Perceptrons

in $=\left(\sum W_{j} \mathrm{x}_{\mathrm{j}}\right)+\theta$
out $=\mathrm{g}[\mathrm{in}]$
g is the activation function
It can be a step function:
$\mathrm{g}(\mathrm{x})=1$ if $\mathrm{x}>=0$ and 0 (or -1) else.

It can be a sigmoid function:
$g(x)=1 /(1+\exp (-x))$.

The sigmoid function is differentiable and can be used in a gradient descent algorithm to update the weights.

and other things...

Gradient Descent

takes steps proportional to the negative of the gradient of a function to find its local minimum

- Let \mathbf{X} be the inputs, y the class, \mathbf{W} the weights
- in $=\sum W_{j} x_{j}$
- $\operatorname{Err}=\mathrm{y}-\mathrm{g}(\mathrm{in})$
- $\mathrm{E}=1 / 2 \mathrm{Err}{ }^{2}$ is the squared error to minimize
- $\partial \mathrm{E} / \partial \mathrm{W}_{\mathrm{j}}=\mathrm{Err} * \partial \mathrm{Err} / \partial \mathrm{W}_{\mathrm{j}}=\mathrm{Err} * \partial / \partial \mathrm{W}_{\mathrm{j}}(\mathrm{g}(\mathrm{in}))(-1)$
- = -Err * $\mathrm{g}^{\prime}(\mathrm{in})^{*} \mathrm{x}_{\mathrm{j}}$
- The update is $W_{j}<-W_{j}+\alpha^{*} E r r * g^{\prime}(i n)^{*} x_{j}$
- α is called the learning rate.

Simple Feed-Forward Perceptrons


```
repeat
    for each e in examples do
        in = ( \sumW W }\mp@subsup{\textrm{x}}{\textrm{j}}{})+
        Err = y[e] - g[in]
        W
until done
```

Examples: $\mathrm{A}=[(.5,1.5),+1], \mathrm{B}=[(-.5, .5),-1], \mathrm{C}=[(.5, .5),+1]$
Initialization: $\mathrm{W}_{1}=1, \mathrm{~W}_{2}=2, \theta=-2$

Note1: when g is a step function, the $\mathrm{g}^{\prime}(\mathrm{in})$ is removed.
Note2: later in back propagation, Err * $\mathrm{g}^{\prime}(\mathrm{in})$ will be called Δ
We'll let $\mathrm{g}(\mathrm{x})=1$ if $\mathrm{x}>=0$ else -1

Graphically

$$
\text { Examples: } A=[(.5,1.5),+1], B=[(-.5, .5),-1], C=[(.5, .5),+1]
$$

Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

Learning

$$
\begin{aligned}
& A=[(.5,1.5),+1], \\
& B=[(-.5, .5),-1], \\
& C=[(.5, .5),+1]
\end{aligned}
$$

```
\[
\begin{aligned}
& \text { repeat } \\
& \text { for each e in examples do } \\
& \quad \text { in }=\left(\sum W_{j} x_{j}\right)+\theta \\
& \operatorname{Err}=y[e]-g[\text { in }] \\
& W_{j}=W_{j}+\alpha \operatorname{Err} g^{\prime}(\text { in }) x_{j}[e] \\
& \text { until done }
\end{aligned}
\]
repeat
    for each e in examples do
        in \(=\left(\sum W_{j} x_{j}\right)+\theta\)
    Err \(=y[e]-g[i n]\)
    til done
```

Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

$$
\begin{aligned}
& \mathrm{A}=[(.5,1.5),+1] \\
& \text { in = .5(1) }+(1.5)(2)-2=1.5 \\
& \mathrm{~g}(\mathrm{in})=1 ; \mathrm{Err}=0 ; \text { NO CHANGE } \\
& \mathrm{B}=[(-.5, .5),-1] \\
& \ln =(-.5)(1)+(.5)(2)-2=-1.5 \\
& \mathrm{~g}(\mathrm{in})=-1 ; \mathrm{Err}=0 ; \text { NO CHANGE }
\end{aligned}
$$

$$
\begin{aligned}
& C=[(.5, .5),+1] \\
& \text { in }=(.5)(1)+(.5)(2)-2=-.5 \\
& g(\text { in })=-1 ; \operatorname{Err}=1-(-1)=2
\end{aligned}
$$

```
Let \alpha=.5
W1<- W1 + .5(2) (.5) leaving out g'
    <-1 +1(.5) = 1.5
W2 <- W2 + .5(2) (.5)
    <- 2+1(.5) = 2.5
0<- 0+.5(+1-(-1))
0<--2+.5(2)=-1
```


Graphically

Examples: $\mathrm{A}=[(.5,1.5),+1], \mathrm{B}=[(-.5, .5),-1], \mathrm{C}=[(.5, .5),+1]$
Initialization: $W_{1}=1, W_{2}=2, \theta=-2$

Back Propagation

- Simple single layer networks with feed forward learning were not powerful enough.
- Could only produce simple linear classifiers.
- More powerful networks have multiple hidden layers.
- The learning algorithm is called back propagation, because it computes the error at the end and propagates it back through the weights of the network to the beginning.

The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.
function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:

examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y}.
network, a multilayer network with L layers, weights $W_{j, i}$, activation function g
local variables: Δ, a vector of errors, indexed by network node
for each weight $w_{i, j}$ in network do
$w_{i, j} \leftarrow$ a small random number

repeat

for each example (\mathbf{x}, \mathbf{y}) in examples do
/* Propagate the inputs forward to compute the outputs. */
for each node i in the input layer do // Simply copy the input values.

$$
a_{i} \leftarrow x_{i}
$$

for $l=2$ to L do
// Feed the values forward.
for each node j in layer l do
$i n_{j} \leftarrow \sum_{i} w_{i, j} a_{i}$
$a_{j} \leftarrow g\left(i n_{j}\right)$
for each node j in the output layer do // Compute the error at the output.

$$
\Delta[j] \leftarrow g^{\prime}\left(i n_{j}\right) \times\left(y_{j}-a_{j}\right)
$$

/* Propagate the deltas backward from output layer to input layer */
for $l=L-1$ to 1 do

for each node i in layer l do

$\Delta[i] \leftarrow g^{\prime}\left(i n_{i}\right) \sum_{j} w_{i, j} \Delta[j] \quad / /$ "Blame" a node as much as its wei£
/* Update every weight in network using deltas. */
for each weight $w_{i, j}$ in network do

$$
w_{i, j} \leftarrow w_{i, j}+\alpha \times a_{i} \times \Delta[j] \quad \text { // Adjust the weights. }
$$

until some stopping criterion is satisfied
return network

Let's break it into steps.

Initialize The backpropagation algorithm

The following is the backpropagation algorithm for learning in multilayer networks.
function BACK-PROP-LEARNING(examples, network)
returns a neural network

inputs:

examples, a set of examples, each with input vector \mathbf{x} and output vector \mathbf{y}. network, a multilayer network with L layers, weights $W_{j, i}$, activation function g local variables: Δ, a vector of errors, indexed by network node
for each weight $w_{i, j}$ in network do
$w_{i, j} \leftarrow$ a small random number

Forward Computation

repeat
for each example (\mathbf{x}, \mathbf{y}) in examples do
/* Propagate the inputs forward to compute the outputs. */
for each node i in the input layer do
// Simply copy the input values.
$a_{i} \leftarrow x_{i}$
for $l=2$ to L do // Feed the values forward.
for each node j in layer l do

$$
\begin{aligned}
& i n_{j} \leftarrow \sum_{i} w_{i, j} a_{i} \\
& a_{j} \leftarrow g\left(i n_{j}\right)
\end{aligned}
$$

Backward Propagation 1

for each node j in the output layer do // Compute the error at the output.

$$
\Delta[j] \leftarrow g^{\prime}\left(i n_{j}\right) \times\left(y_{j}-a_{j}\right)
$$

- Node nf is the only node in our output layer.
- Compute the error at that node and multiply by the derivative of the weighted input sum to get the change delta.

Backward Propagation 2

/* Propagate the deltas backward from output layer to input layer */
for $l=L-1$ to 1 do
for each node i in layer l do

$$
\Delta[i] \leftarrow g^{\prime}\left(i n_{i}\right) \sum_{j} w_{i, j} \Delta[j] \quad / / \text { "Blame" a node as much as its wei } \S \text { ht }
$$

- At each of the other layers, the deltas use
- the derivative of its input sum
- the sum of its output weights
- the delta computed for the output error

If there were two output nodes, there would be a summation.

Backward Propagation 3

/* Update every weight in network using deltas. */
for each weight $w_{i, j}$ in network do

$$
w_{i, j} \leftarrow w_{i, j}+\alpha \times a_{i} \times \Delta[j] \quad \text { // Adjust the weights. }
$$

Now that all the deltas are defined, the weight updates just use them.

Back Propagation Summary

- Compute delta values for the output units using observed errors.
- Starting at the output-1 layer
- repeat
- propagate delta values back to previous layer
- till done with all layers
- update weights for all layers
- This is done for all examples and multiple epochs, till convergence or enough iterations.

Time taken to build model: 16.2 seconds

Multi-Class Classification

Solution

- Traditional Method: 1-vs-other method
- Too slow. If we have n-classes, we need to train n models
- Performance is not great, because the sample size is different for positive and negative classes
- Multiple Neurons
- Use n output neuron to correspond n classes.
- Easy, fast, and robust
- Problem: how to model the probability? The values in the neural network can be negative
 or greater than 1.

Softmax: normalized exponential

Input: vector of reals

$$
\sigma(\mathbf{z})_{j}=\frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}}
$$

Output: probability distribution Z softmax([1,2,7,3,2]):

Calculate e^{x} : $[2.72,7.39,1096.63,20.09,7.39]$
Calculate sum $\left(\mathrm{e}^{\mathrm{x}}\right): 2.72+7.39+1096.63+20.09+7.39=1134.22$
Normalize: $\mathrm{e}^{\mathrm{x}} / \mathrm{sum}\left(\mathrm{e}^{\mathrm{x}}\right)=[0.002,0.007,0.967,0.017,0.007]$
Result is a vector of reals.

A Simple Example

Here, we will go over a simple 2-layer neural network (no bias).

Mini-batch for Machine Learning

- We use a matrix to represent data.
- If there are 10,000 images, and each image contains 784 features, we can use a $10,000 \times 784$ matrix to represent the whole dataset.
- Hard to load a large dataset at once; so, we can split the dataset into smaller batches.
- For instance, in homework 5, we use batch size 128. Then, each batch contains 128 images, and the corresponding data is stored in a 128 x 784 matrix.
- Then, we can feed batches one-by-one to the ML model, and train it for each batch.

Neural Network Easy Example

Here, we use batch size of 4 , and we only visualize the first sample for simplicity.

[Example] Forward Pass

[Example] Ground Truth and Loss

"o" represents elementwise
 [EXan@ple] Backp multiplication for matrix

0	0.351
0	0.234
0	0.468

Backpropagation [Cont.]

[Example] Update with Learning Rate 0.1

[Example] Done

Think: What will happen if we go forward again?

Think: What will happen if we go forward again?

Tricks for Neural Network

Problem: Under and Overfitting

Underfitting: model not powerful enough, too much bias
Overfitting: model too powerful, fits to noise, doesn't generalize well

Want the happy medium, how?

Weight decay: neural network regularization

We want the weights to be close to 0 .

We use Δw_{t} to represent the weight gradient for timepoint t (the current step).

Let L be the "loss" function; (e.g. $L=|y-g(i n)|, L=(y-g(i n))^{2}$, etc.)
λ is a regularization parameter (for decay)
Higher: more penalty for large weights, less powerful model
Lower: less penalty, more overfitting
Before:

$$
\begin{aligned}
& \Delta \mathrm{w}_{\mathrm{t}}=-\partial / \partial \mathrm{w}_{\mathrm{t}} \mathrm{~L}\left(\mathrm{w}_{\mathrm{t}}\right) \\
& \mathrm{w}_{\mathrm{t}+1}=\mathrm{w}_{\mathrm{t}}+\alpha \Delta \mathrm{w}_{\mathrm{t}}
\end{aligned}
$$

Now:

$$
\begin{aligned}
w_{t+1} & =w_{t}-\alpha\left[\partial / \partial w_{t} L\left(w_{t}\right)+\lambda w_{t}\right]=w_{t}-\alpha\left[-\Delta w_{t}+\lambda w_{t}\right] \\
& =w_{t}-\alpha \partial / \partial w_{t} L\left(w_{t}\right)-\alpha \lambda w_{t}=w_{t}+\alpha \Delta w_{t}-\alpha \lambda w_{t}
\end{aligned}
$$

Subtract a little bit of weight every iteration

Momentum: speeding up SGD

If we keep moving in same direction we should move further every round

Before:

Momentum

Δw_{t-1} represent the gradient
calculated in the previous step.

NN updates with weight decay and momentum
$\Delta w_{t}^{\prime}=-\partial / \partial w_{t} L\left(w_{t}-\lambda w_{t}+m \Delta w_{t-1}^{\prime}\right.$

Gradient of loss \begin{tabular}{|c|}

\hline | Weight |
| :---: |
| decay |

\hline
\end{tabular}

$w_{t+1}=w_{t}+(\alpha) \Delta w_{t}^{\prime}$
Learning rate

Activations

Linear Activation

- Only offers linear effects.
- For a 2-layer NN with linear activations for both layers.

$$
f(X)=g\left(g\left(X w_{1}\right) w_{2}\right)=X w_{1} w_{2}=X w
$$

- Not so great, need Non-Linear activations to learn more complex data distribution.

Logistic Activation

$$
\begin{gathered}
g(x)=\frac{1}{1+e^{-x}} \\
g^{\prime}(x)=g(x) g(1-x)
\end{gathered}
$$

$$
\xrightarrow[\rightarrow]{\frac{d}{d x} f(x)=\{(x) \mid t y)}
$$

- Aka Sigmoid function (S-shape)
- Used in Logistic regression.
- The result is in range $(0,1)$,
- It can represent probability.
- A special case of logistic growth (population model).

ReLU Activation

$$
\begin{gathered}
g(x)=\max (0, x) \\
g^{\prime}(x)=\mathbf{1}_{g(x)>0}
\end{gathered}
$$

- Rectified linear unit
- Fast! In backpropagation, 1 when positive, 0 otherwise.
- Optimizes important (positive) values and ignore the others.
- Analog to neurons
- Information loss is small (other neurons will carry information)

Visualization with ReLU

Training in progress...

LeakyReLU Activation

- No information loss (compared to ReLU)
- Solves "dying ReLU" problem (i.e. all neurons output 0)

- Similar to ReLU, pays less attention to less important neurons
- Not always better than ReLU

CSE 455 Homework 5 Neural Network

Due: 05/28

MNIST: Handwriting recognition

50,000 images of handwriting
$28 \times 28 \times 1$ (grayscale)
Numbers 0-9
10 class softmax regression
Input is 784 pixel values
Train the model
> 95\% accuracy

5	0	4	1	9	2	1	3	1	4
3	5	3	6	1	7	2	8	6	9
4	0	9	1	1	2	4	3	2	7
3	8	6	9	0	5	6	0	7	6
1	8	1	9	3	9	8	5	9	3
3	0	7	4	4	8	0	9	4	1
4	4	6	0	4	5	6	7	0	0
1	7	1	6	3	0	2	1	1	7
9	0	2	6	7	8	3	9	0	4
6	7	4	6	8	0	7	8	3	1

Functions You need to Code

Functions You need to Code (classifier.c)

void activate_matrix(matrix m, ACTIVATION a)
void gradient_matrix(matrix m, ACTIVATION a, matrix d)
matrix forward_layer(layer *l, matrix in)
matrix backward_layer(layer *l, matrix delta)
void update_layer(layer *l, double rate, double momentum, double decay)

Run Experiments and Write a Report (hw5.pdf)

Play around with tryhw5.py file, and answer the questions.
Save your question to a PDF file and submit to Canvas for grading.

Important Data Structure (image.h)

```
typedef enum{LINEAR, LOGISTIC, RELU, LRELU, SOFTMAX} ACTIVATION;
typedef struct {
    matrix in; // Saved input to a layer
    matrix w; // Current weights for a layer
    matrix dw; // Current weight updates
    matrix v; // Past weight updates (for use with momentum)
    matrix out; // Saved output from the layer
    ACTIVATION activation; // Activation the layer uses
} layer;
typedef struct {
    layer *layers;
    int n;
} model;
```


Useful Matrix manipulation functions (matrix.c)

```
matrix matrix_mult_matrix(matrix a, matrix b);
matrix transpose_matrix(matrix m) ;
matrix axpy_matrix(double a, matrix x, matrix y); // a * x + y
```


Forward Pass in Homework

Backward Pass in Homework

Weight Update in Homework

$$
\Delta w_{t-1}^{\prime} \text { represent the regularized }
$$ gradient from the previous step. In the code, we use "I->v" to store this value.


```
for(i = 0; i < m.rows; ++i){
Apply activation "a" to the matrix "m"
    double sum = 0;
    for(j = 0; j < m.cols; ++j){
        double x = m.data[i][j];
        if(a == LOGISTIC) {
            // TODO m.data[i][j] should equals 1 / (1 + exp(-x));
        } else if (a == RELU) {
            // TODO m.data[i][j] should equals x if x > 0; otherwise, it should equal 0
        } else if (a == LRELU){
            // TODO m.data[i][j] should equals x if x > 0; otherwise, it should equal 0.1 * x.
        } else if (a == SOFTMAX){
            // TODO m.data[i][j] should equals exp(x) here, and we will normalize it later.
        }
        sum += m.data[i][j];
    }
    if (a == SOFTMAX) {
        // TODO: have to normalize by sum if we are using SOFTMAX
        // for all the possible j, we should normalize it as m.data[i][j] /= sum;
    }
}
```

TODO void gradient matrix(matrix m, ACTIVATION a, matrix d)
Calculate $\mathrm{g}^{\prime}(\mathrm{m}) * \mathrm{~d}$, and store in-place to matrix d . The matrix " m " is the output of a layer, and matrix " d " is the Δ of output.

```
int i, j;
for(i = 0; i < m.rows; ++i){
    for(j = 0; j < m.cols; ++j){
        double x = m.data[i][j];
        // TODO: multiply the correct element of d by the gradient
        // if a is SOFTMAX or a is LINEAR, we should do nothing (multiply by 1)
        // if a is LOGISTIC, d.data[i][j] should times x * (1.0 - x);
        // if a is RELU and x <= 0, d.data[i][j] should be zero
        // if a is LRELU and x <= 0, d.data[i][j] should multiple 0.1
    }
}
```

TODO matrix forward_layer(layer *l, matrix in)
Given the input data "in" and layer "l", calculate the output data.

```
l->in = in; // Save the input for backpropagation
// TODO: multiply input by weights and apply activation function.
// Calculate out = in * l->w (note: matrix multiplication here)
// Then, apply activate_matrix function to out with l->activation
free_matrix(l->out);// free the old output
l->out = out; // Save the current output for gradient calculation
return out;
```

TODO matrix backward_layer(layer *l, matrix delta)
Given the layer " l " and delta, perform backward step:
1.4.1: Calculate the delta after considering the activation
1.4.2: Calculate Δw
1.4.3: Calculate and Return $\Delta \mathrm{o}$ (aka " dx ").

```
// delta is \Deltaout
// TODO: modify it in place to be "g'(out) * delta" out with // gradient_matrix function.
// You can use gradient_matrix function with "l->out" and "l->activation" to "delta"
// TODO: then calculate dL/dw and save it in l->dw
free_matrix(l->dw);
// Calculate xt as the transpose matrix of "l->in"
// Calculate dw as xt times delta (matrix multiplication)
// free matrix xt to avoid memory leak
l->dw = dw;
// TODO: finally, calculate dL/dx and return it. (Similar to 1.4.2. Care memory leak)
// Calculate dx = delta * (l->w)^T, where * is matrix multiplication and ^T is matrix transpose
return dx;
```

TODO void update layer(layer *l, double rate, double momentum, double decay)

Given a layer " l ", learning rate, momentum, and decay rate, Update the weight (i.e. I->w)

```
// Calculate \Deltaw_t = dL/dw_t - \lambdaw_t + m\Deltaw_{t-1}
// save it to l->v
// Note that You can use axpy matrix to perform the matrix summation/subtraction
```

// Update l->w
// l->W = rate * l->V + l->W

Functions You Need to Know before Experiments

For simplicity, we already filled the following functions for you. You should read and understand these functions (classifier.c) before running experiments.

```
layer make_layer(int input, int output, ACTIVATION activation)
matrix forward_model(model m, matrix X)
void backward_model(model m, matrix dL)
void update_model(model m, double rate, double momentum, double decay)
double accuracy_model(model m, data d)
double cross_entropy_loss(matrix y, matrix p)
void train_model(model m, data d, int batch, int iters, double rate, double momentum, double decay)
```


Get the Data

1. Download, Unzip, and Prepare the MNIST Dataset

```
wget https://pjreddie.com/media/files/mnist_train.tar.gz
wget https://pjreddie.com/media/files/mnist_test.tar.gz
tar xzf mnist_train.tar.gz
tar xzf mnist_test.tar.gz
find train -name \*.png > mnist.train
find test -name \*.png > mnist.test
```

2. Download, Unzip, and Prepare the CIFAR-10 Dataset
```
wget http://pjreddie.com/media/files/cifar.tgz
tar xzf cifar.tgz
find cifar/train -name \*.png > cifar.train
find cifar/test -name \*.png > cifar.test
```


Experiments (Write Your Answers to hw5.pdf)

1. Coding and Data prepare
2. MNIST Experiments
3. Linear Softmax Model (1-layer)
4. Run the basic model
5. Tune the learning rate
6. Tune the decay
7. Neural Network (2-layer NNs and 3-layer NNs)
8. Find the best activation
9. Tune the learning rate
10. Tune the decay
11. Tune the decay for 3-layer Neural Network
12. Experiments for CIFAR-10
13. Neural Network (3-layer NNs)
14. Tune the learning rate and decay
