Computer Vision

CSE 455 More Matching

Linda Shapiro
Professor of Computer Science \& Engineering Professor of Electrical Engineering

Review

- Descriptors
- Matching

Simple Normalized Descriptor

interest point

201
neighborhood around interest point

45	56	200
46	201	200
85	101	105

normalized neighborhood around interest point

```
156 145 1
```

156 145 1
155 0
155 0
116 100 96

```
116 100 96
```

- The simple descriptor just subtracts the center value from each of the neighbors, including itself to normalize for lighting and exposure.
- We can store this as a 1 D vector to be efficient:

```
15614511550111610096
```


Properties of our Descriptor

- Translation Invariant
- Not scale invariant
- Not rotation invariant
- Somewhat invariant to lighting changes
- Let's look at the SIFT descriptor, because it is heavily used, even without using the SIFT key point detector.
- It already solves the scale problem by computing at multiple scales and keeping track.

Rotation invariance

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

Once we have found the key points and a dominant orientation for each, we need to describe the (rotated and scaled) neighborhood about each.

Full version

SIFT descriptor

- Divide the 16×16 window into a 4×4 grid of cells (2×2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations $=128$ dimensional descriptor

Full version

SIFT descriptor

- Divide the 16×16 window into a 4×4 grid of cells
- Compute an orientation histogram for each cell

8 ...
8

Matching with Features

-Detect feature points in both images

Matching with Features

-Detect feature points in both images
-Find corresponding pairs

Find the best matches

- For each descriptor a in A, find its best match b in B

- And store it in a vector of matches
- Note: this is abstract; see code for details.
- Larger Goal: Combine two or more overlapping images to make one larger image

Slide credit: Vaibhav Vaỉaish

Simple case: translations

$$
\begin{gathered}
\text { Displacement of match } i=\left(\mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}, \mathbf{y}_{i}^{\prime}-\mathbf{y}_{i}\right) \\
\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{\prime}-\mathbf{x}_{i}, \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}^{\prime}-\mathbf{y}_{i}\right)
\end{gathered}
$$

Solving for translations

- Using least squares

Least squares

$$
\mathbf{A t}=\mathbf{b}
$$

- Find \mathbf{t} that minimizes

$$
\|\mathbf{A} \mathbf{t}-\mathbf{b}\|^{2}
$$

- To solve, form the normal equations

$$
\begin{gathered}
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{t}=\mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\mathbf{t}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{gathered}
$$

Affine transformations

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

- How many unknowns?
- How many equations per match?
- $x^{\prime}=a x+b y+c ; y^{\prime}=d x+e y+f$
- How many matches do we need?

Affine transformations

- Residuals:

$$
\begin{aligned}
r_{x_{i}}(a, b, c, d, e, f) & =\left(a x_{i}+b y_{i}+c\right)-x_{i}^{\prime} \\
r_{y_{i}}(a, b, c, d, e, f) & =\left(d x_{i}+e y_{i}+f\right)-y_{i}^{\prime}
\end{aligned}
$$

- Cost function:
$C(a, b, c, d, e, f)=$

$$
\sum_{i=1}^{n}\left(r_{x_{i}}(a, b, c, d, e, f)^{2}+r_{y_{i}}(a, b, c, d, e, f)^{2}\right)
$$

Affine transformations

- Matrix form

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & \vdots & & \\
& & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
\boldsymbol{A}_{2} \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]
$$

Solving for homographies
 $$
\left[\begin{array}{c} x_{i}^{\prime} \\ y_{i}^{\prime} \\ 1 \end{array}\right] \cong\left[\begin{array}{lll} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{array}\right]\left[\begin{array}{c} x_{i} \\ y_{i} \\ 1 \end{array}\right]
$$

Why is this now a variable and not just 1?

- A homography is a projective object, in that it has no scale. It is represented by the above matrix, up to scale.
- One way of fixing the scale is to set one of the coordinates to 1 , though that choice is arbitrary.
- But that's what most people do and your assignment code does.

Solving for homographies

$$
\begin{array}{r}
{\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]} \\
x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{array}
$$

Why the division?

$x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02}$
$y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12}$

Solving for homographies

$$
\begin{aligned}
x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right) & =h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccc}
x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x_{i}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -y_{i}^{\prime} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \text { This is just for one pair of points. }
\end{aligned}
$$

Direct Linear Transforms (n points)

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{n}_{\mathbf{9}}^{\mathbf{n}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{2 n} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Defines a least squares problem:
minimize $\|\mathrm{Ah}-0\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Direct Linear Transforms

- Why could we not solve for the homography in exactly the same way we did for the affine transform, ie.

$$
\mathbf{t}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Answer from Sameer Agarwal (Dr. Rome in a Day)

- For an affine transform, we have equations of the form $A x_{i}+b$ $=y_{i}$, solvable by linear regression.
- For the homography, the equation is of the form
$H \tilde{x}_{i} \sim \tilde{y}_{i} \quad$ (homogeneous coordinates)
and the \sim means it holds only up to scale. The affine solution does not hold.

Matching features

RAndom SAmple Consensus

Inliers: matches that agree with a given match or (later) homography

RAndom SAmple Consensus

Least squares fit (from inliers)

RANSAC for estimating homography

- RANSAC loop:

1. Select four feature pairs (at random)
2. Compute homography \boldsymbol{H} (exact)
3. Compute inliers where $\left\|p_{i}^{\prime}, \boldsymbol{H} p_{i}\right\|<\varepsilon$

- Keep largest set of inliers
- Re-compute least-squares \boldsymbol{H} estimate using all of the inliers

Simple example: fit a line

- Rather than homography H (8 numbers) fit $y=a x+b$ (2 numbers a, b) to 2D pairs

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Pick 2 points
- Fit line
- Count inliers

Simple example: fit a line

- Use biggest set of inliers
- Do least-square fit

What still needs to be fixed?

- The planar projections may not work so well
- Your homework has extra credit for using cylindrical projections instead.
- Here's the idea.

Panorama algorithm:

Find corners in both images
Calculate descriptors
Match descriptors
RANSAC to find homography
Stitch together images with homography

Stitching panoramas:

- We know homography is right choice under certain assumption:
- Assume we are taking multiple images of planar object

In practice:

In practice:

In pra

What's halppening?

What's happening? \uparrow

What's happening?

What's happening?

What's halppening?

What's happening?

What's happening?

What's happening?

Very bad for big panoramas!

Very bad for big panoramas!

Very bad for big panoramas!

Fails :-(

How do we fix it? Cylinders!

How do we fix it? Cylinders!

Calculate angle and height:
$\boldsymbol{\theta}=(\mathrm{x}-\mathrm{xc}) / \mathrm{f}$
$h=(y-y c) / f$
Find unit cylindrical cóords:
$X^{\prime}=\sin (\theta)$
$Y^{\prime}=h$
$Z^{\prime}=\cos (\theta)$
Project to image plane:

$$
\begin{aligned}
& x^{\prime}=f X^{\prime} / Z^{\prime}+x c \\
& y^{\prime}=f Y^{\prime} / Z^{\prime}+y c
\end{aligned}
$$

$(x c, y c)=$ center of projection and $f=$ focal length of camera

Dependant on focal length!

$\mathrm{f}=1000$

$\mathrm{f}=1400$

$f=10,000$

$f=10,000$

Does it work?

Does it work?

Does it work?

Does it work?

4-2

Does it work?

Does it work? Yay!

Where are we?

- We are going to build a panorama from two (or more) images.
- We need to learn about
- Finding interest points
- Describing small patches about such points
- Finding matches between pairs of such points on two images, using the descriptors
- Selecting the best set of matches and saving them
- Constructing homographies (transformations) from one image to the other and picking the best one
- Stitching the images together to make the panorama

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Image Blending

Feathering

Effect of window (ramp-width) size

Effect of window size

$\left.\begin{aligned} & 1 \\ & 0 \\ & 0\end{aligned} \right\rvert\,$

Good window size

What can we do instead?
"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber =7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&arAu hor=Blinn\%2C+J.F.

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (a premultiplied) RGB values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Gain Compensation: Getting rid of artifacts

- Simple gain adjustment
- Compute average RGB intensity of each image in overlapping region
- Normalize intensities by ratio of averages

Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Recognizing Panoramas

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point $(K=4)$
3. For each image
a) Select M candidate matching images by counting matched keypoints ($m=6$)
b) Solve homography $\mathbf{H}_{\mathbf{i j}}$ for each matched image

Recognizing Panoramas

Input: N images

1. Extract SIFT points, descriptors from all images
2. Find K-nearest neighbors for each point $(K=4)$
3. For each image
a) Select M candidate matching images by counting matched keypoints ($m=6$)
b) Solve homography \mathbf{H}_{ij} for each matched image
c) Decide if match is valid ($n_{i}>8+0.3 n_{f}$)

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Make a graph of matched pairs

Find connected components of the graph

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)
4. Find connected components
5. For each connected component
a) Solve for rotation and f
b) Project to a surface (plane, cylinder, or sphere)
c) Render with multiband blending

Finding the panoramas

Homework 3

CREATING PANORAMAS!

Useful structures (defined in image.h)

- Data structure for an point typedef struct\{
float x, y;
\} point;
- Data structure for a descriptor typedef struct\{ point p; <-pixel location int n; <-size of data float *data;
\} descriptor;
- Data structure for a match typedef struct\{ point p, q; <-matching points
int ai, bi; <-matching indices of descriptor arrays float distance; <-dist. between matching descriptors \} match;

Overall algorithm

image panorama_image(image a, image b, float sigma, float thresh, int nms, float inlier_thresh, int iters, int cutoff)
\{
// Calculate corners and descriptors descriptor *ad = harris_corner_detector(a, sigma, thresh, nms, \&an); descriptor $*$ bd = harris_corner_detector(b, sigma, thresh, nms, \&bn);
// Find matches match *m = match_descriptors(ad, an, bd, bn, \&mn);
// Run RANSAC to find the homography matrix $H=\operatorname{RANSAC}(m, m n$, inlier_thresh, iters, cutoff);
// Stitch the images together with the homography image combine = combine_images(a, b, H);
return combine;

1. Harris corner detection

- TODO \#1.1: Compute structure matrix S
- TODO \#1.2: Compute cornerness response map R from structure matrix S
- TODO \#1.3: Find local maxes in map R using nonmaximum suppression
- TODO \#1.4: Compute descriptors for final corners

TODO \#1.1: structure matrix

- Compute Ix and ly using Sobel filters from HW2
- Create an empty image of 3 channels
- Assign channel 1 to Ix^{2}
- Assign channel 2 to ly^{2}
- Assign channel 3 to lx*ly
- Compute weighted sum of neighbors
- smooth the image with a gaussian of given sigma

TODO \#1.2: response map

- For each pixel of the given structure matrix S :
- Get $\mathrm{Ix}^{2}, \mathrm{Iy}^{2}$ and Ixly from the 3 channels
- Compute $\operatorname{Det}(S)=\left|x^{2} *\right| y^{2}-|x| y *|x| y$
- Compute $\operatorname{Tr}(S)=1 x^{2}+1 y^{2}$
- Compute $\mathrm{R}=\operatorname{Det}(\mathrm{S})-0.06$ * $\operatorname{Tr}(\mathrm{S}) * \operatorname{Tr}(\mathrm{~S})$

TODO \#1.3: NMS

- For each pixel ' p ' of the given response map R
- get value(p)
- loop over all neighboring pixels ' q ' in a $2 w+1$ window
- +/- w around the current pixel location
- if value(q) > value (p), value $(\mathrm{p})=-99999$ (very low)
- set ' p ' to value(p)

TODO \#1.4: corner descriptors

- Given: Response map after NMS
- Initialize count; loop over each pixel
- if pixel value > threshold, increment count
- Initialize descriptor array of size 'count'
- Loop over each pixel again
- if pixel value > threshold, create descriptor for that pixel
- use make_descriptor() defined in panorama_helpers.c
- add this new descriptor to the array

2. Matching descriptors

- TODO \#2.1: Find best matches from descriptor array "a" to descriptor array "b"
- TODO \#2.2: Eliminate duplicate matches to ensure one-to-one match between "a" and " b "

TODO \#2.1: best matches

- For each descriptor ' a_{r} ' in array ' a ':
- initialize min_distance and best_index
- for each descriptor ' b_{s} ' in array ' b ':
- compute L1 distance between a_{r} and b_{s}
- sum of absolute differences
- if distance < min_distance:
- update min_distance and best_index

TODO \#2.2: remove duplicates

- Initialize an array of Os called 'seen'
- Loop over all matches:
- if b-index of current match is $\neq 1$ in 'seen'
- set the corresponding value in 'seen' to 1
- retain the match
- else, discard the match

3. Perform RANSAC

- TODO \#3.1: Implement projecting a point given a homography
- TODO \#3.2: Compute inliers from an array of matches (using 3.1)
- TODO \#3.3: Implement RANSAC algorithm

TODO \#3.1: point projection

- Given point p, set matrix $c_{3 x 1}=[x$-coord, y-coord,1]
- Compute $\mathrm{M}_{3 \times 1}=\mathrm{H}_{3 \times 3}{ }^{*} \mathrm{C}_{3 \times 1}$ with given Homography
- Compute x, y coordinates of a point ' q ':
- x-coord: M[0] / M[2]
- y-coord: M[1] / M[2]
- Return point ' q '

TODO \#3.2: model inliers

- Loop over each match from array of matches (starting from end):
- project point ' p ' of match using given ' H '
- compute L2 distance between point ' q ' of match and the projected point
- if distance < given threshold:
- it is an inlier; bring match to the front of array
- update inlier count

TODO \#3.3: implement RANSAC

- For each iteration:
- compute homography with 4 random matches
- call compute_homography() with argument 4
- if homography is empty matrix, continue
- else compute inliers with this homography
- if \#inliers > max_inliers:
- compute new homography with all inliers
- update best_homography with this new homography
- update max_inliers with \#inliers computed with this new homography unless new homography is empty
- if updated max_inliers > given cutoff: return best_homography
- Return best_homography

4. Combine images

- Project corners of image ' b ' and create a big empty image ' c ' to place image ' a ' and projected ' b '. This part is given in the code.
- For each pixel in image ' a ', get pixel value and assign it to 'c' after proper offset
- For each pixel in image 'c' within projected bounds:
- project to image 'b' using given homography
- get pixel value at projected location using bilinear interpolation
- assign the value to ' c ' after proper offset

5. Extra Credit

- Stitch together more than 2 images to create a big panorama. See rainier_panorama() in tryhw3.py

6. Super Extra Credit

- Implement cylindrical projection for an image
- See lecture slides for the formula

Have Fun

