Computer Vision

CSE 455 More Matching

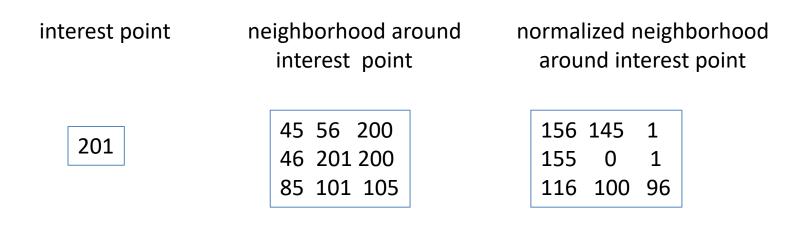
Linda Shapiro

Professor of Computer Science & Engineering Professor of Electrical Engineering

Review

- Descriptors
- Matching

Simple Normalized Descriptor

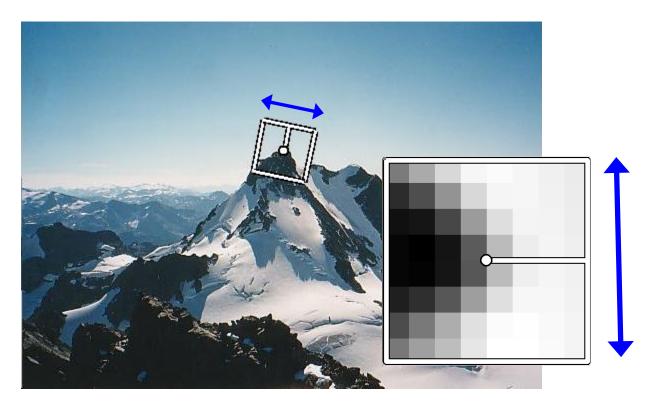


- The simple descriptor just subtracts the center value from each of the neighbors, including itself to normalize for lighting and exposure.
- We can store this as a 1D vector to be efficient: 156 145 1 155 0 1 116 100 96

Properties of our Descriptor

- Translation Invariant
- Not scale invariant
- Not rotation invariant
- Somewhat invariant to lighting changes
- Let's look at the SIFT descriptor, because it is heavily used, even without using the SIFT key point detector.
- It already solves the scale problem by computing at multiple scales and keeping track.

Rotation invariance

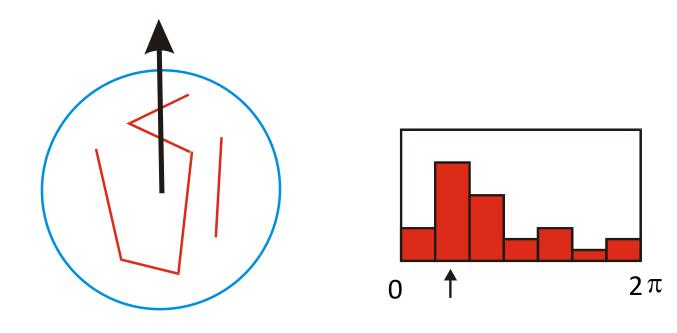


- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

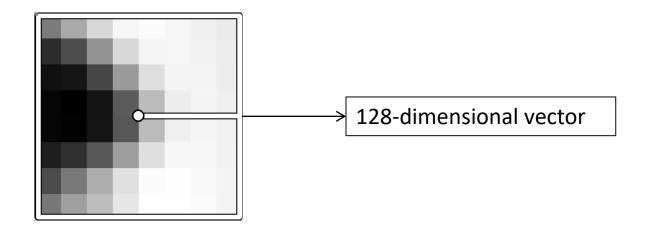
Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]



Once we have found the key points and a dominant orientation for each, we need to describe the (rotated and scaled) neighborhood about each.



SIFT descriptor

Full version

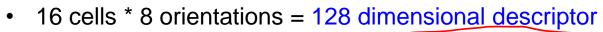
- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

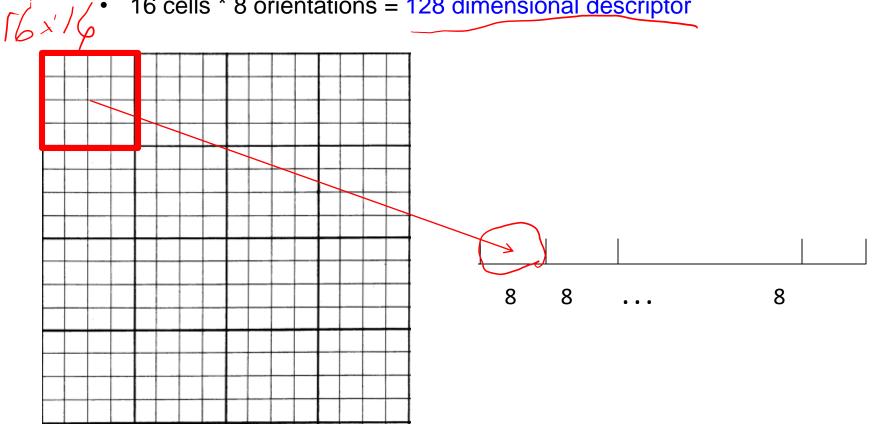


SIFT descriptor

Full version

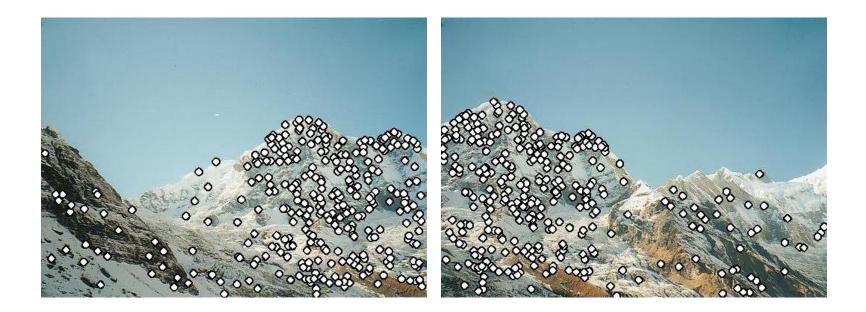
- Divide the 16x16 window into a 4x4 grid of cells ٠
- Compute an orientation histogram for each cell ٠





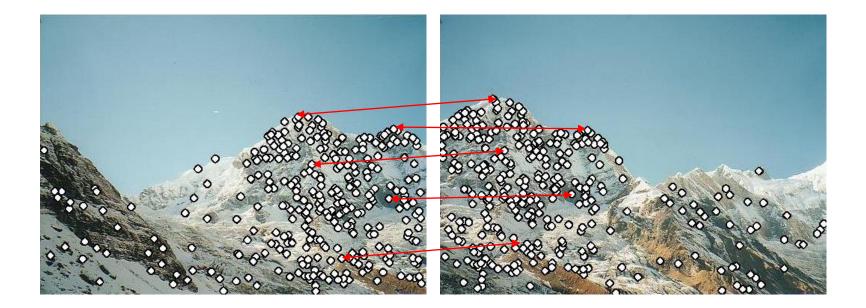
Matching with Features

•Detect feature points in both images



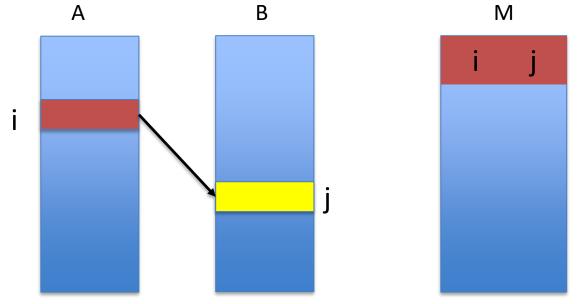
Matching with Features

- •Detect feature points in both images
- •Find corresponding pairs



Find the best matches

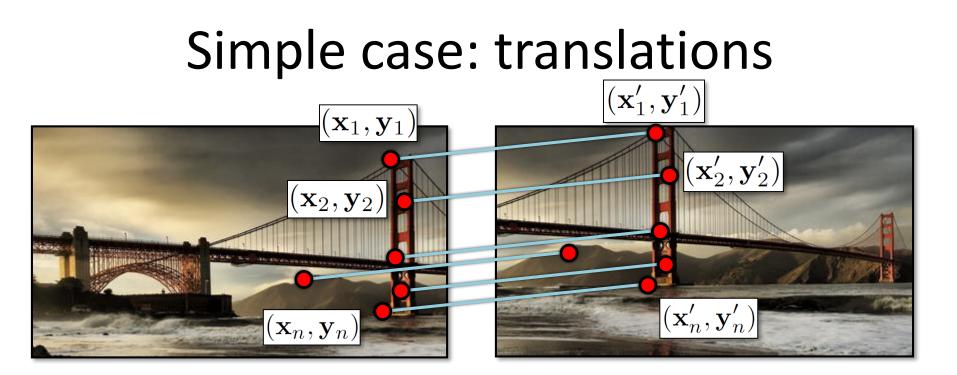
 For each descriptor a in A, find its best match b in B



- And store it in a vector of matches
- Note: this is abstract; see code for details.

 Larger Goal: Combine two or more overlapping images to make one larger image





Displacement of match i =
$$(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i)$$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n}\sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n}\sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$$

Solving for translations

Using least squares

 $\begin{array}{c} \chi_{t} = \chi_{t}' - \chi_{1} \\ \chi_{t} = \chi_{t}' - \chi_{1} \\ \Im_{t} = y_{t}' - y_{1} \\ \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{array} \right| \begin{bmatrix} x_{t} \\ y_{t} \end{bmatrix} = \begin{bmatrix} x_{1}' - x_{1} \\ y_{1}' - y_{1} \\ x_{2}' - x_{2} \\ y_{2}' - y_{2} \\ \vdots \\ x_{n}' - x_{n} \\ y_{n}' - y_{n} \end{bmatrix}$ **t**. = 2 x 1 2*n* x 2 2*n* x 1

Least squares

At = b

• Find **t** that minimizes

$$||\mathbf{At} - \mathbf{b}||^2$$

• To solve, form the normal equations

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- x' = ax + by + c; y' = dx + ey + f
- How many matches do we need?

Affine transformations

• Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

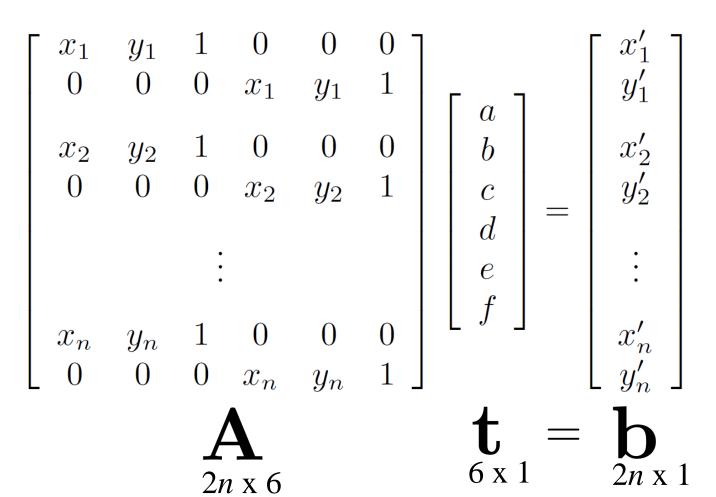
$$r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function:

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

Matrix form



19

Solving for homographies $\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$

Why is this now a variable and not just 1?

- A homography is a projective object, in that it has no scale. It is represented by the above matrix, up to scale.
- One way of fixing the scale is to set one of the coordinates to 1, though that choice is arbitrary.
- But that's what most people do and your assignment code does.

Solving for homographies

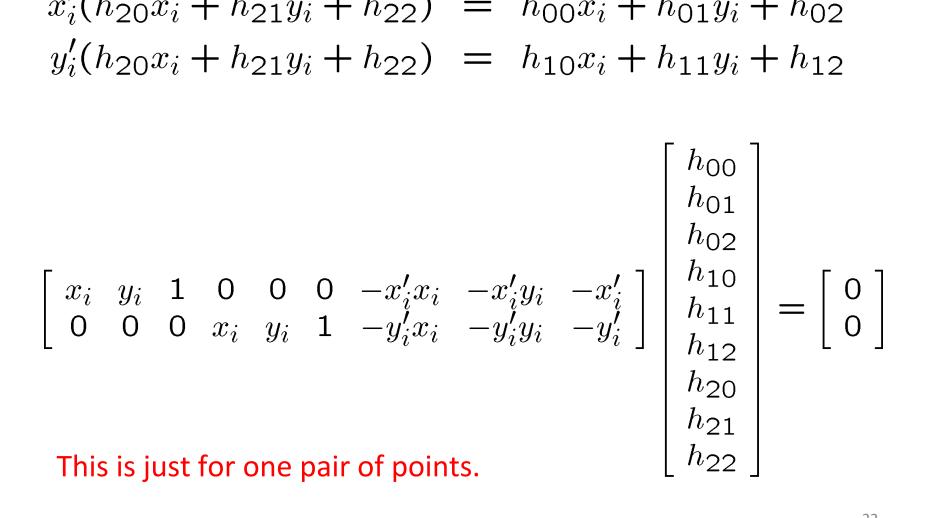
$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

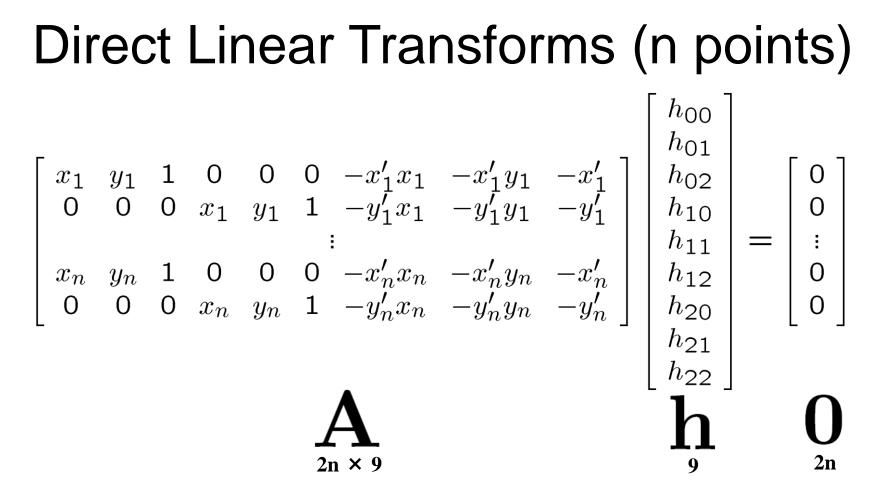
$$x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$
$$y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$
Why the division?

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Solving for homographies

 $x'_{i}(h_{20}x_{i} + h_{21}y_{i} + h_{22}) = h_{00}x_{i} + h_{01}y_{i} + h_{02}$





Defines a least squares problem: minimize $\|\mathbf{A}\mathbf{h}-\mathbf{0}\|^2$

- Since $\, h \,$ is only defined up to scale, solve for unit vector $\, \, \hat{h} \,$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Direct Linear Transforms

• Why could we not solve for the homography in exactly the same way we did for the affine transform, ie.

$$\mathbf{t} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Answer from Sameer Agarwal (Dr. Rome in a Day)

- For an affine transform, we have equations of the form Ax_i + b
 = y_i, solvable by linear regression.
- For the homography, the equation is of the form

 $H\tilde{x}_i \sim \tilde{y}_i$ (homogeneous coordinates)

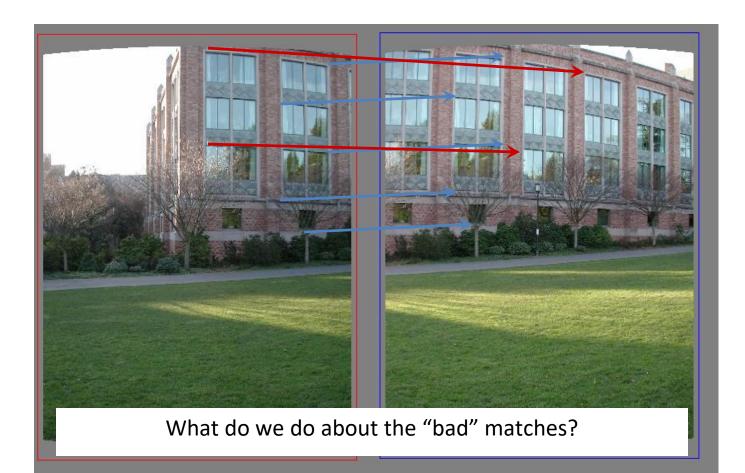
and the ~ means it holds only up to scale. The affine solution does not hold.



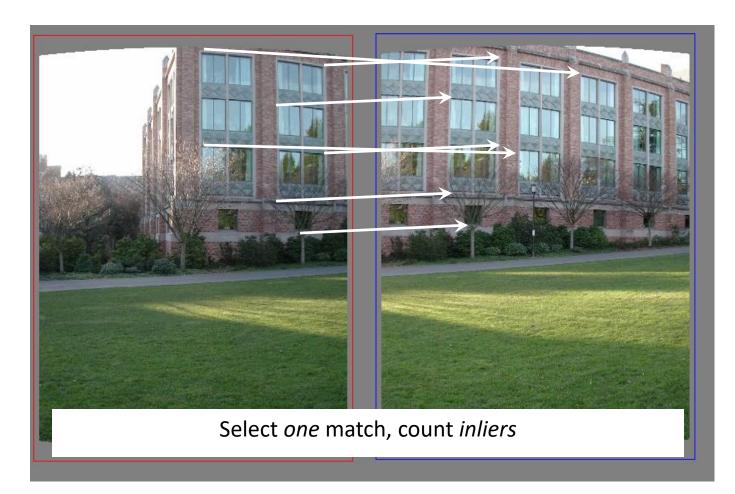
Colosseum: 2,097 images, 819,242 points

Trevi Fountain: 1,935 images, 1,055,153 points

Matching features

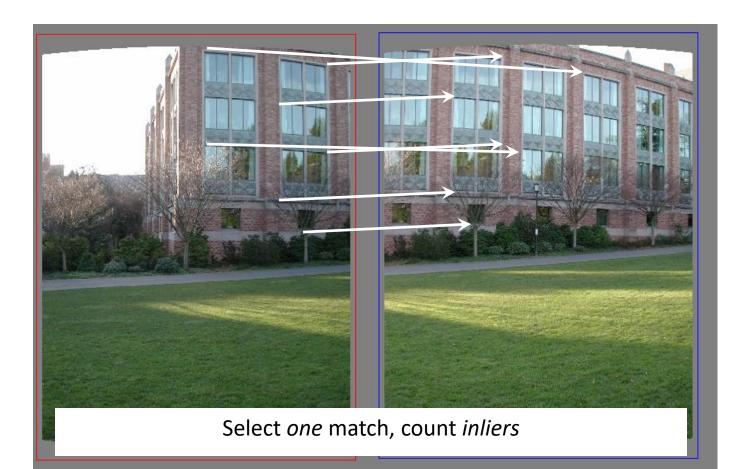


<u>RAndom SAmple Consensus</u>

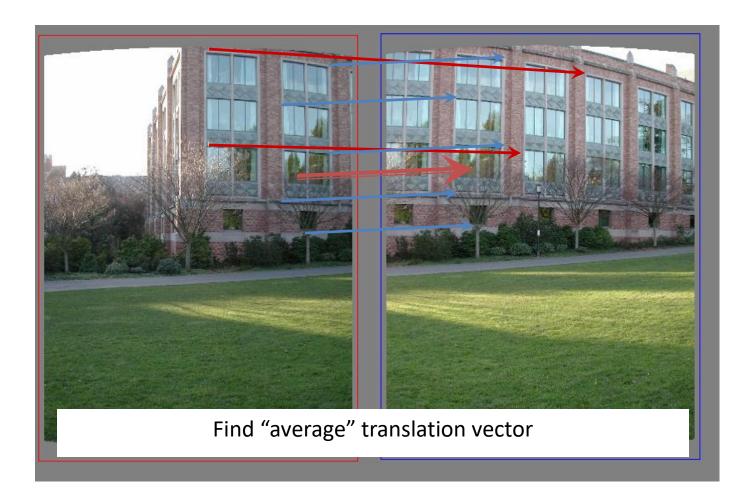


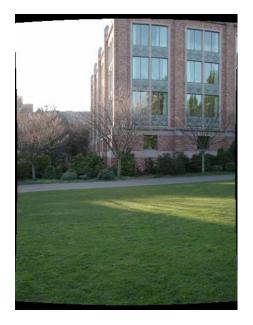
Inliers: matches that agree with a given match or (later) homography

<u>RAndom SAmple Consensus</u>



Least squares fit (from inliers)

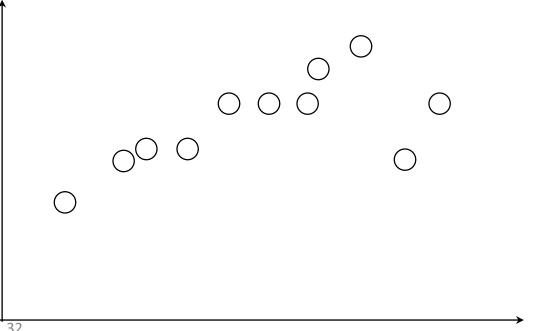




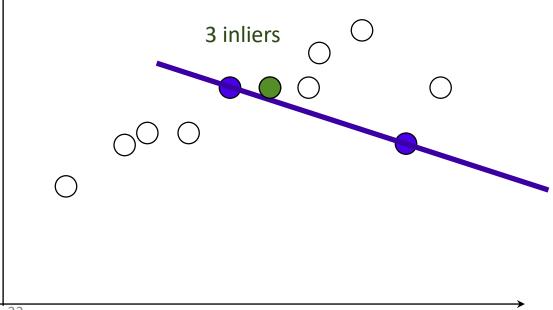
RANSAC for estimating homography

- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute inliers where $||p_i', H p_i|| < \varepsilon$
- Keep largest set of inliers
- Re-compute least-squares *H* estimate using all of the inliers

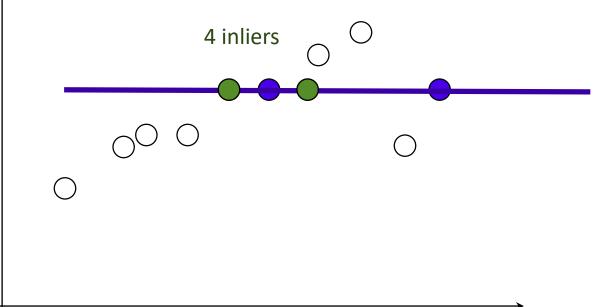
 Rather than homography H (8 numbers) fit y=ax+b (2 numbers a, b) to 2D pairs



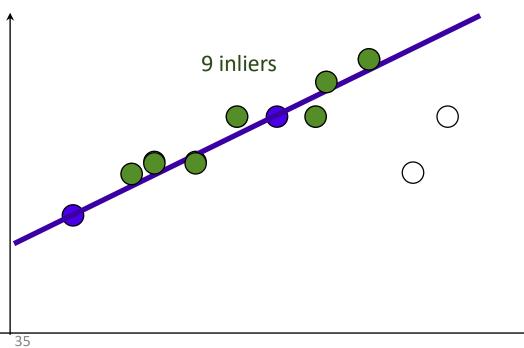
- Pick 2 points
- Fit line
- Count inliers



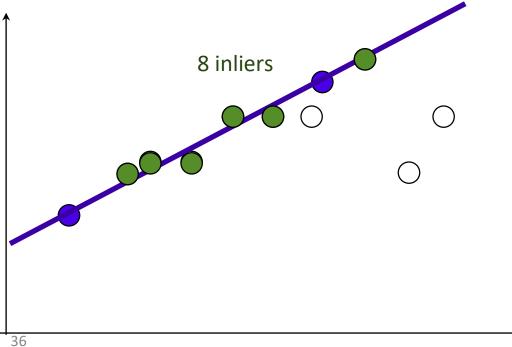
- Pick 2 points
- Fit line
- Count inliers



- Pick 2 points
- Fit line
- Count inliers

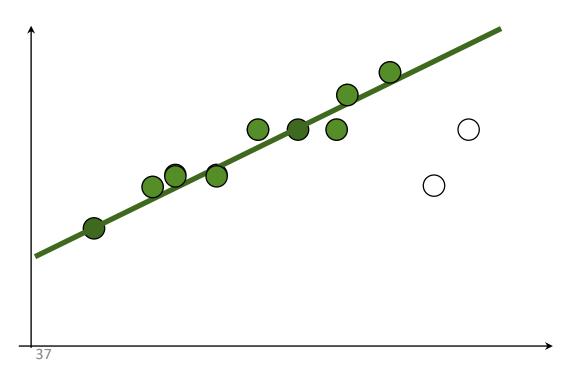


- Pick 2 points
- Fit line
- Count inliers



Simple example: fit a line

- Use biggest set of inliers
- Do least-square fit



What still needs to be fixed?

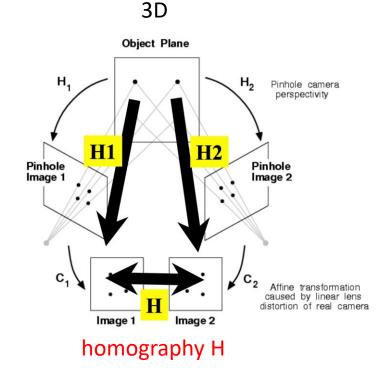
- The planar projections may not work so well
- Your homework has extra credit for using cylindrical projections instead.
- Here's the idea.

Panorama algorithm:

- Find corners in both images
- Calculate descriptors
- Match descriptors
- RANSAC to find homography
- Stitch together images with homography

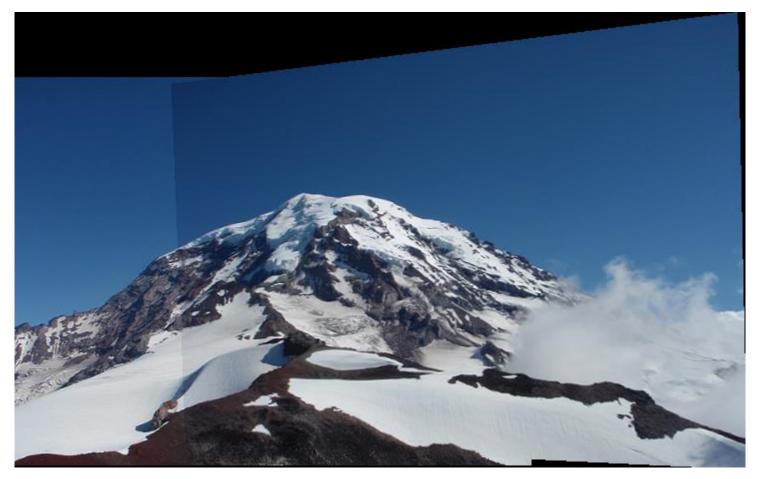
Stitching panoramas:

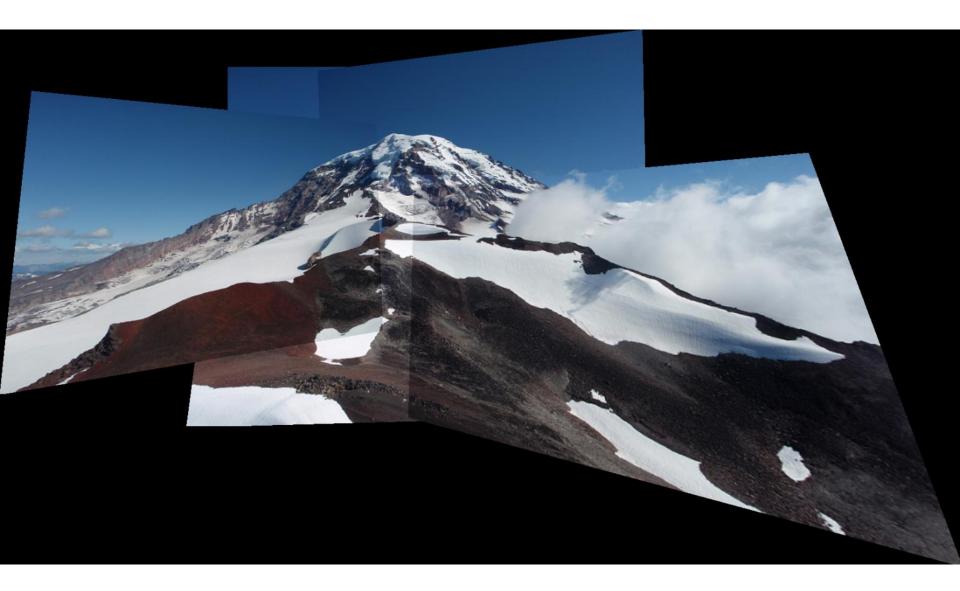
- We know homography is right choice under certain assumption:
 - Assume we are taking multiple images of planar object

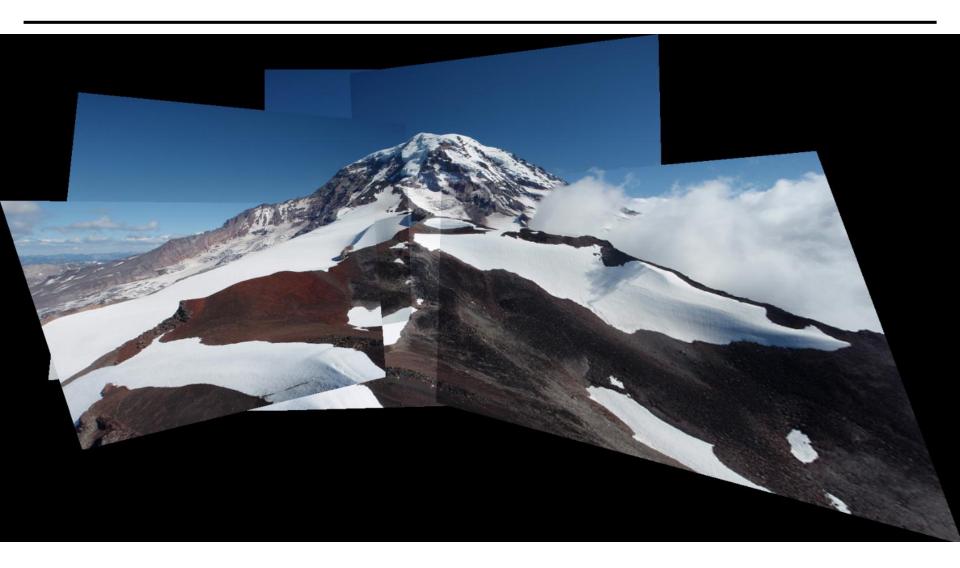


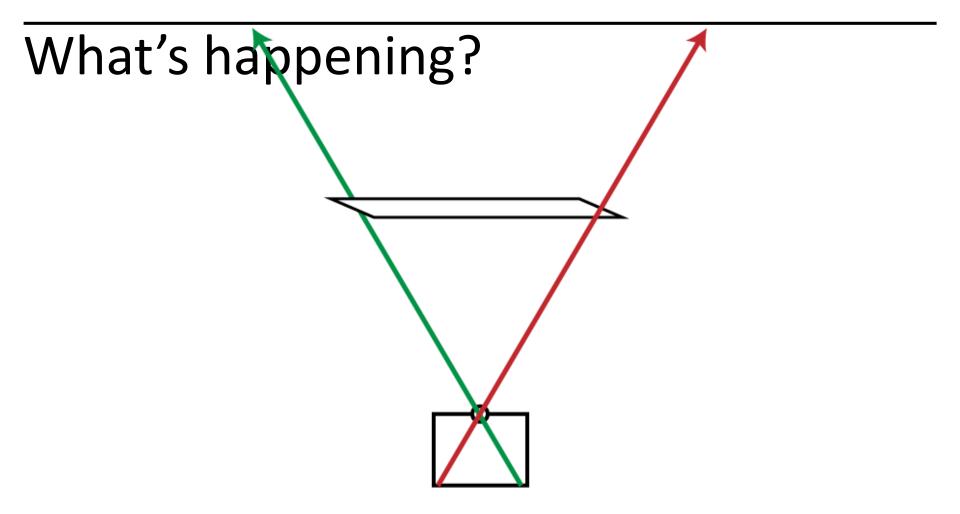
In practice:

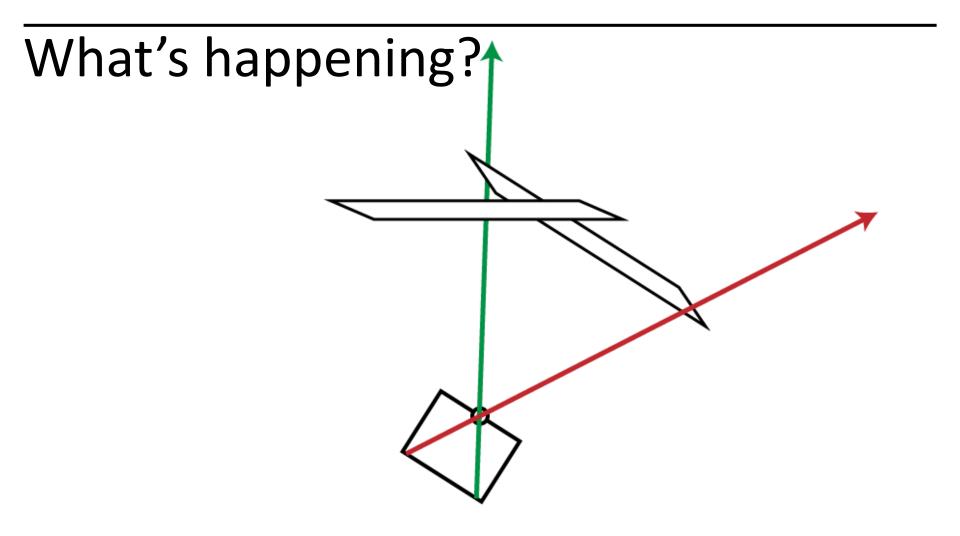
In practice:

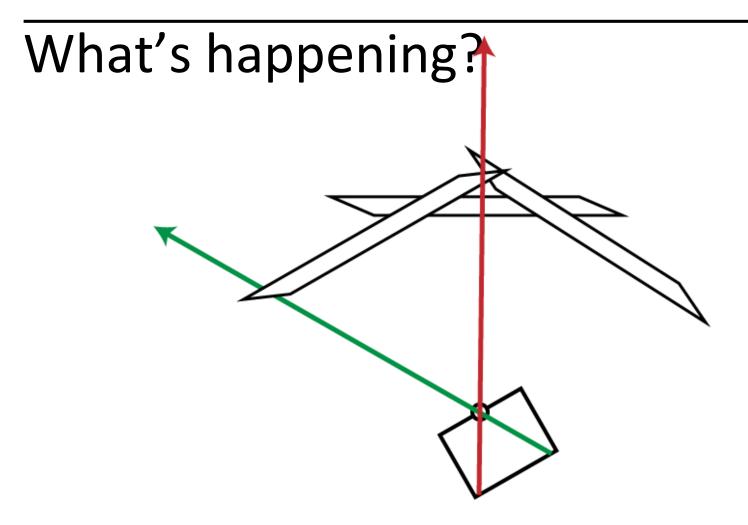


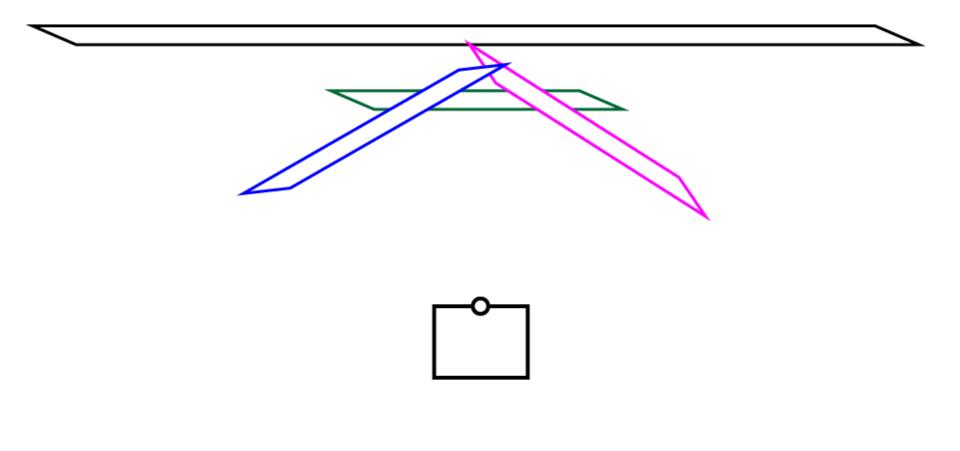


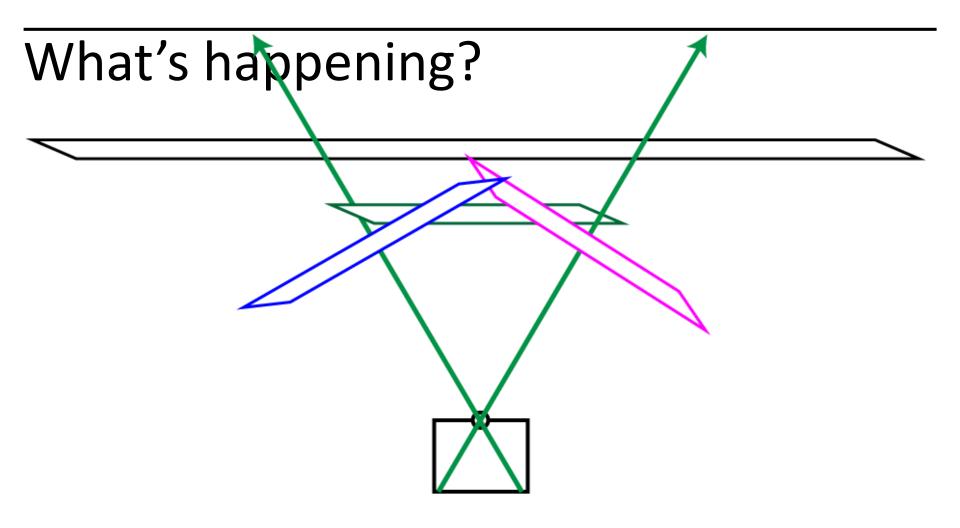


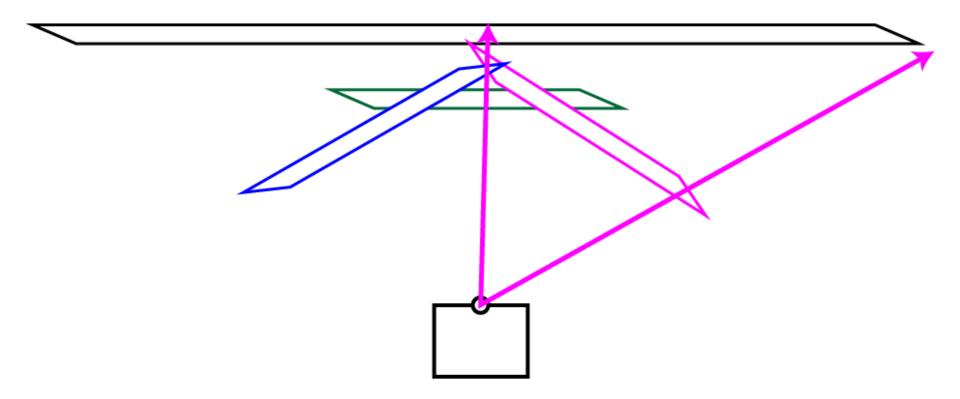


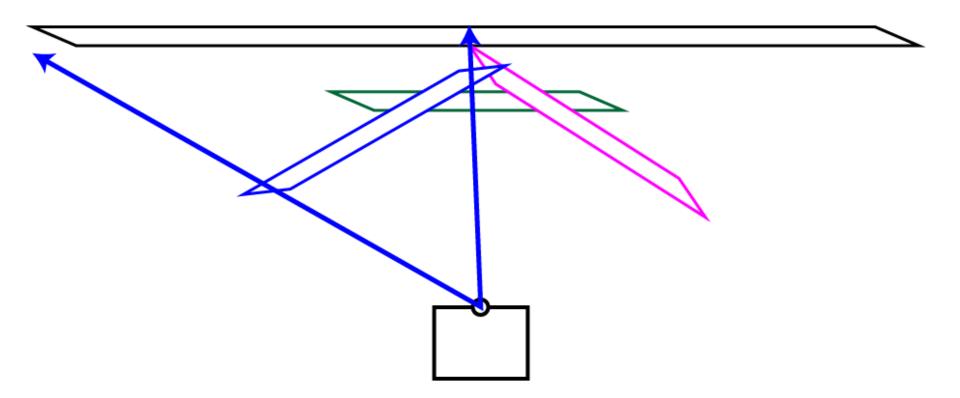


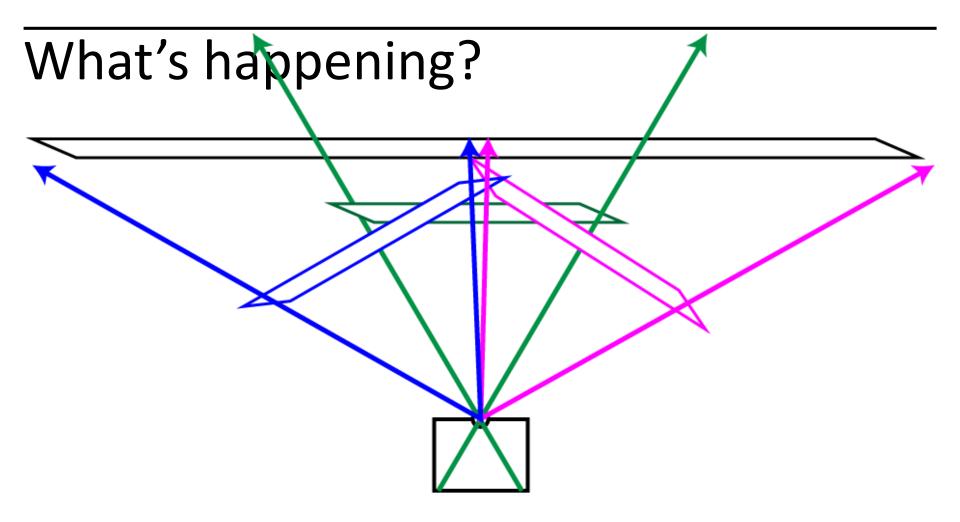


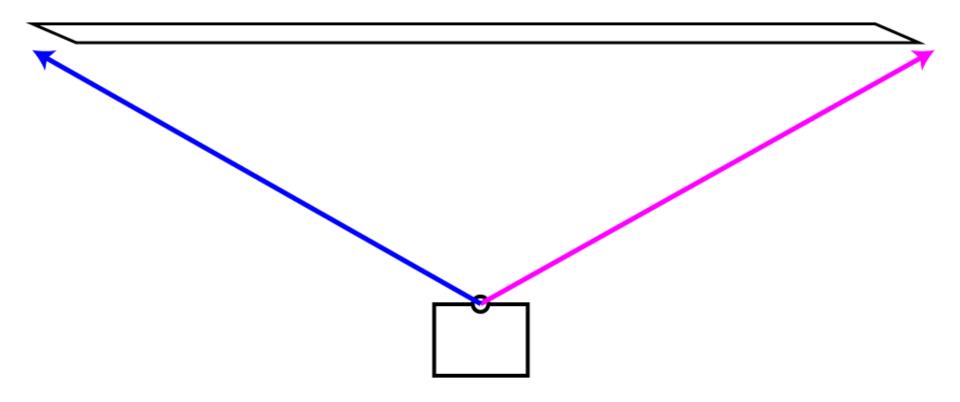












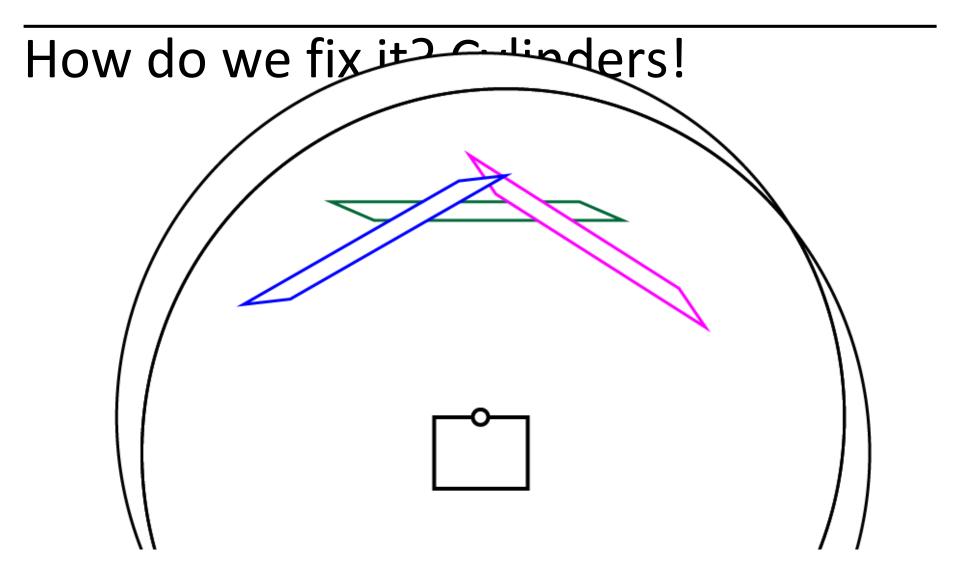
Very bad for big panoramas!

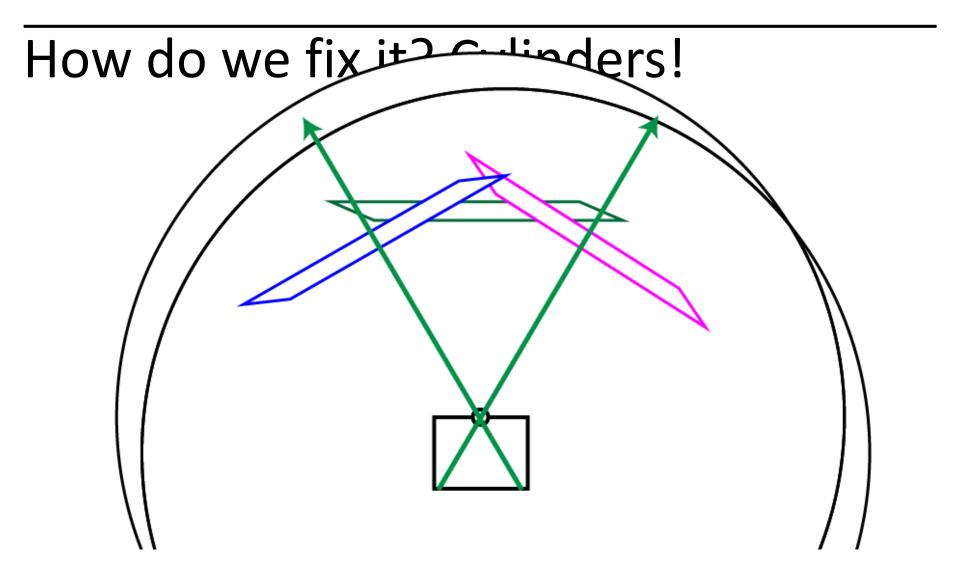
Very bad for big panoramas!

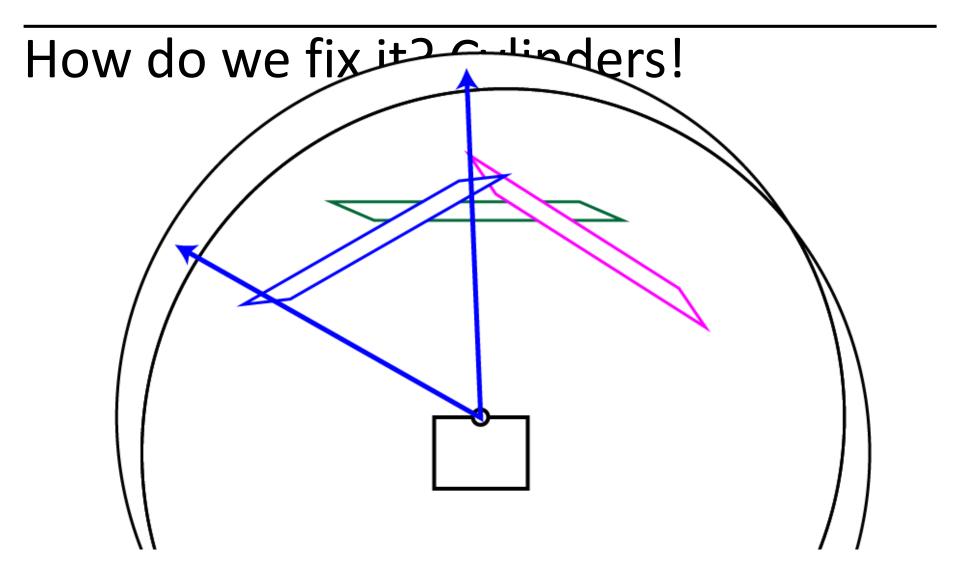
Very bad for big panoramas!

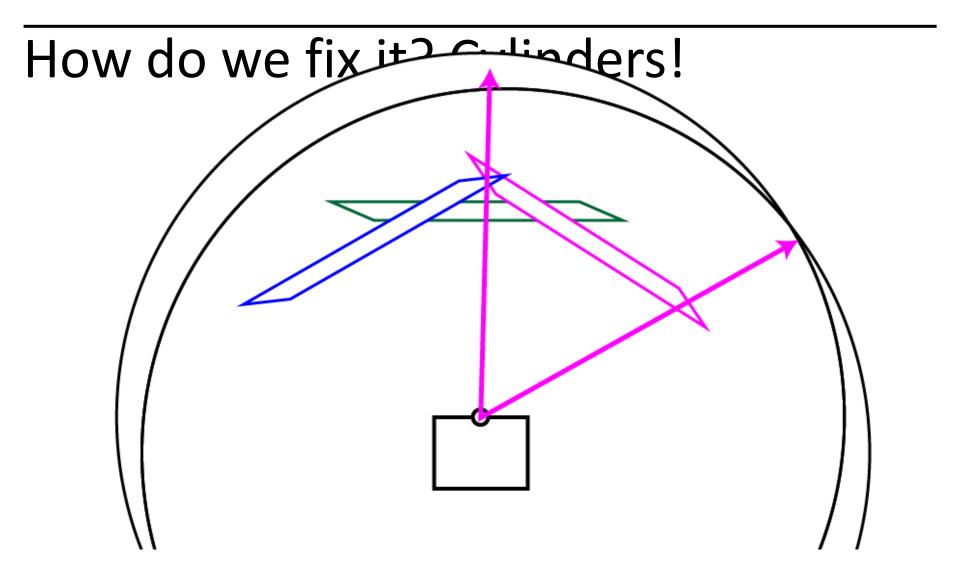
Fails :-(

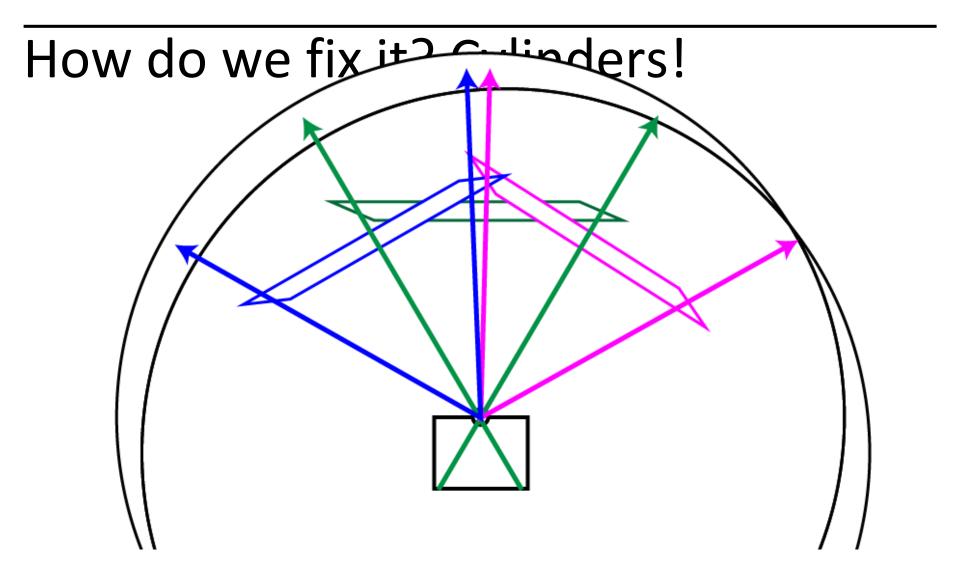
How do we fix it? Cylinders!



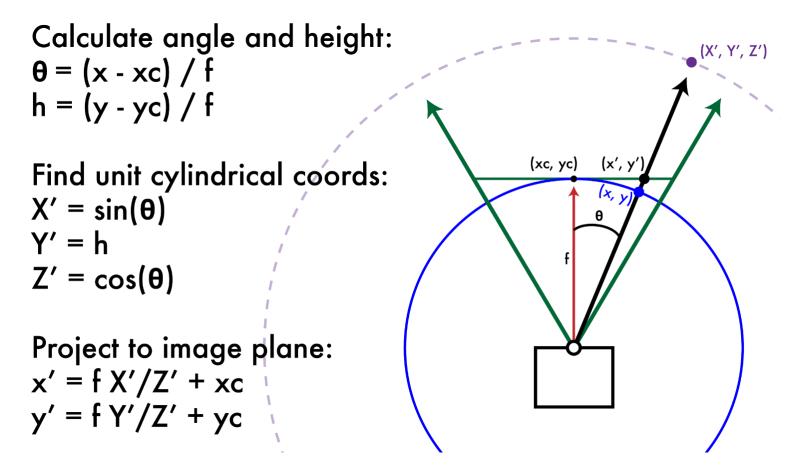








How do we fix it? Cylinders!



(xc,yc) = center of projection and f = focal length of camera

Dependant on focal length!

f = 300

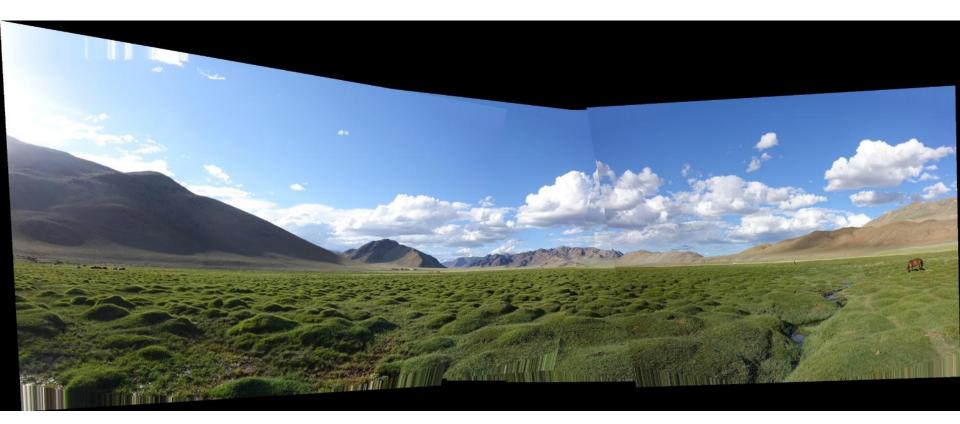
f = 500

f = 1000

f = 1400

f = 10,000

f = 10,000



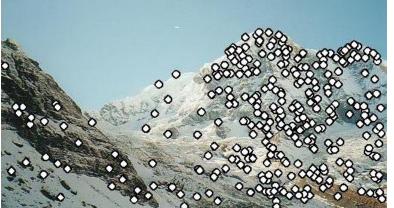
Does it work? Yay!

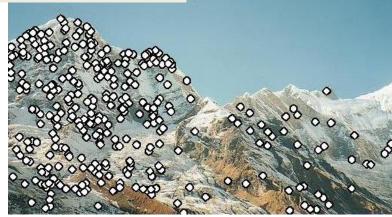
Where are we?

- We are going to build a panorama from two (or more) images.
- We need to learn about
 - Finding interest points
 - Describing small patches about such points
 - Finding matches between pairs of such points on two images, using the descriptors
 - Selecting the best set of matches and saving them
 - Constructing homographies (transformations) from one image to the other and picking the best one
 - Stitching the images together to make the panorama

RANSAC for Homography

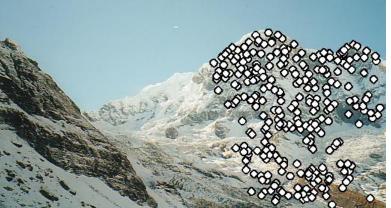
Initial Matched Points

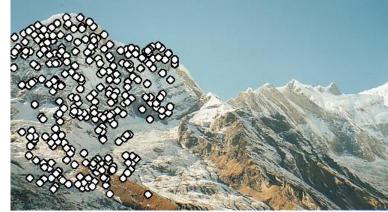




RANSAC for Homography

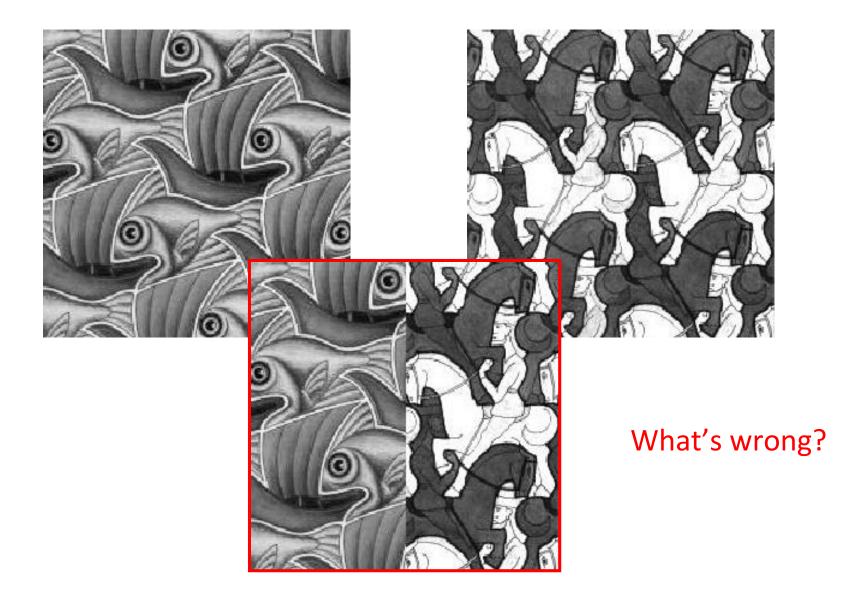
Final Matched Points



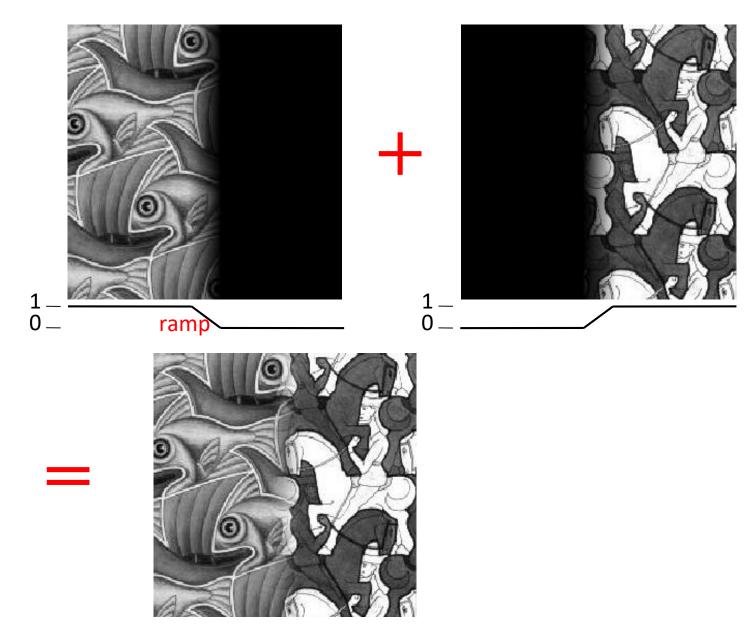


RANSAC for Homography

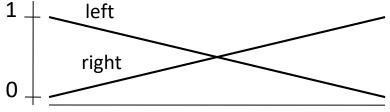
Image Blending

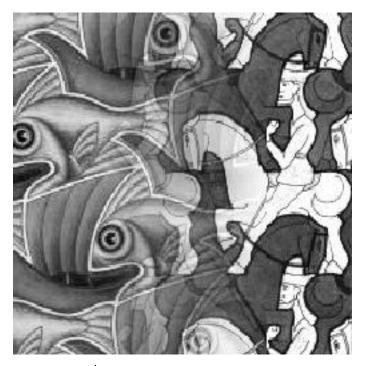


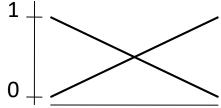
Feathering



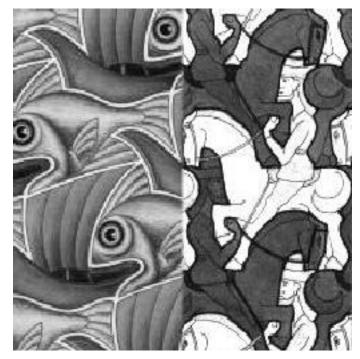
Effect of window (ramp-width) size

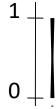




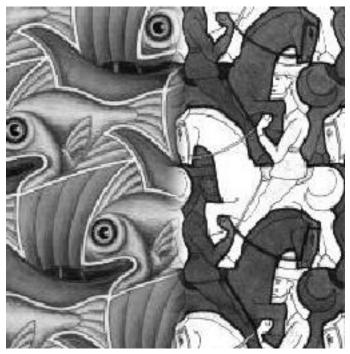


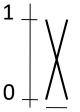
Effect of window size





Good window size



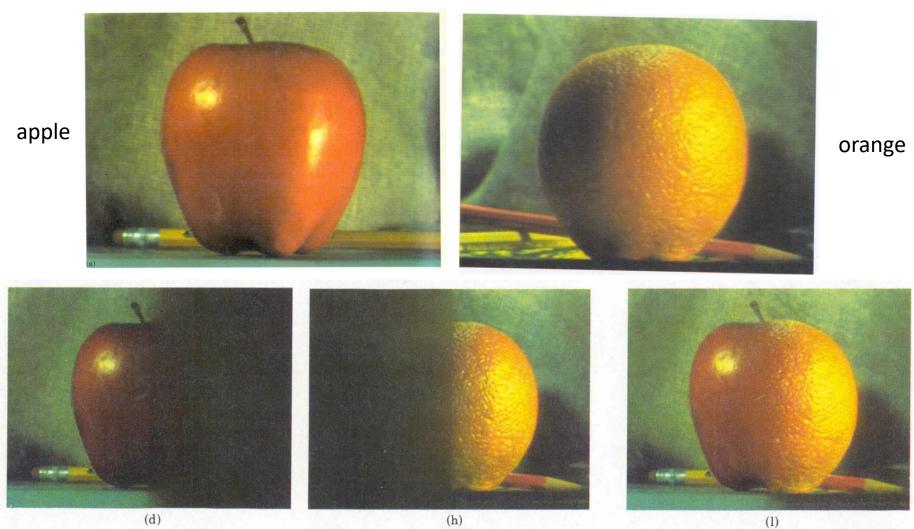


What can we do instead?

"Optimal" window: smooth but not ghosted

• Doesn't always work...

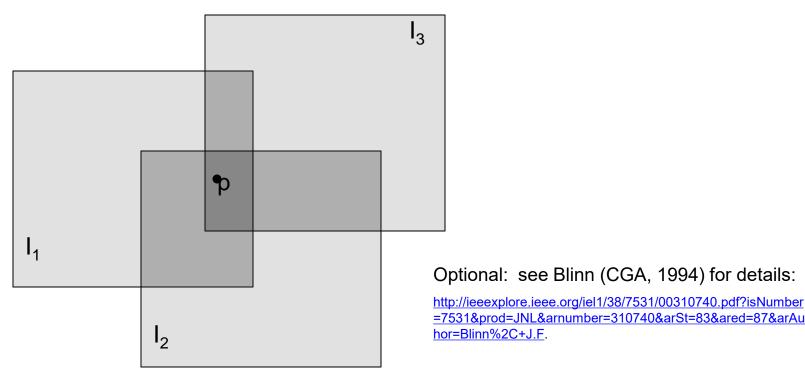
Pyramid blending



Create a Laplacian pyramid, blend each level

 Burt, P. J. and Adelson, E. H., A Multiresolution Spline with Application to Image Mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. http://persci.mit.edu/pub_pdfs/spline83.pdf

Alpha Blending



Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

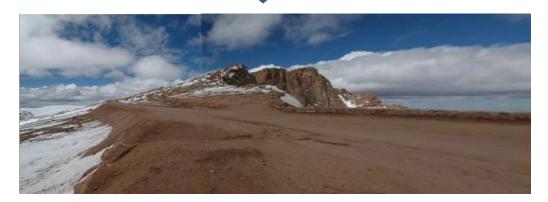
color at p = $\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$

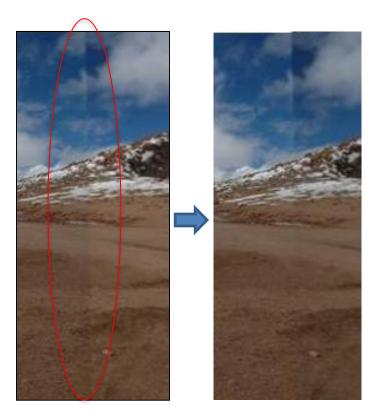
Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Gain Compensation: Getting rid of artifacts

- Simple gain adjustment
 - Compute average RGB intensity of each image in overlapping region
 - Normalize intensities by ratio of averages





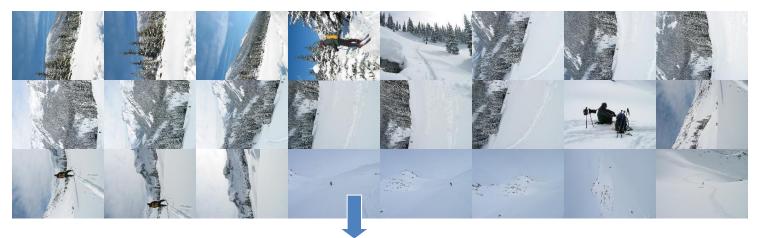
Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Recognizing Panoramas



Some of following material from Brown and Lowe 2003 talk

Brown and Lowe 2003, 2007

Recognizing Panoramas

Input: N images

- Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (m=6)
 - b) Solve homography \mathbf{H}_{ij} for each matched image

Recognizing Panoramas

Input: N images

- 1. Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (m=6)
 - b) Solve homography \mathbf{H}_{ij} for each matched image
 - c) Decide if match is valid $(n_i > 8 + 0.3 n_f)$

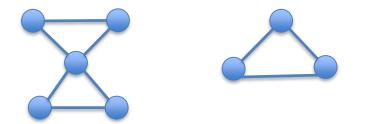
inliers

keypoints in overlapping area

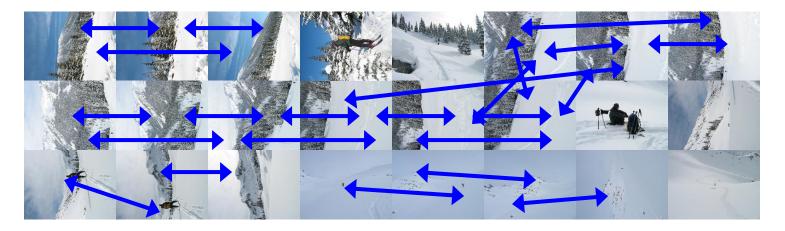
Recognizing Panoramas (cont.)

(now we have matched pairs of images)

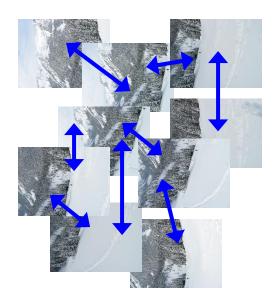
Make a graph of matched pairs
 Find connected components of the graph

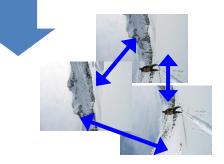


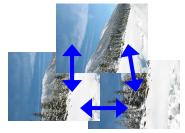
Finding the panoramas

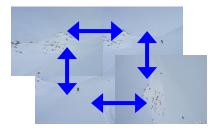


Finding the panoramas









Recognizing Panoramas (cont.)

(now we have matched pairs of images)

- 4. Find connected components
- 5. For each connected component
 - a) Solve for rotation and f
 - b) Project to a surface (plane, cylinder, or sphere)
 - c) Render with multiband blending

Finding the panoramas

Homework 3

CREATING PANORAMAS!

Useful structures (defined in image.h)

• Data structure for an point

typedef struct{

float x, y;

} point;

• Data structure for a descriptor

typedef struct{

point p; <-pixel location
int n; <-size of data
float *data;</pre>

} descriptor;

• Data structure for a match
typedef struct{
 point p, q; <-matching
points
 int ai, bi; <-matching
indices of descriptor arrays
 float distance; <-dist.
between matching descriptors
} match;</pre>

Overall algorithm

image panorama_image(image a, image b, float sigma, float thresh, int
nms, float inlier_thresh, int iters, int cutoff)

// Calculate corners and descriptors
descriptor *ad = harris_corner_detector(a, sigma, thresh, nms, &an);
descriptor *bd = harris_corner_detector(b, sigma, thresh, nms, &bn);

```
// Find matches
match *m = match_descriptors(ad, an, bd, bn, &mn);
```

```
// Run RANSAC to find the homography
matrix H = RANSAC(m, mn, inlier_thresh, iters, cutoff);
```

```
// Stitch the images together with the homography
image combine = combine_images(a, b, H);
```

```
return combine;
```

{

1. Harris corner detection

• TODO #1.1: Compute structure matrix S

• TODO #1.2: Compute cornerness response map R from structure matrix S

• TODO #1.3: Find local maxes in map R using nonmaximum suppression

• TODO #1.4: Compute descriptors for final corners

TODO #1.1: structure matrix

- Compute Ix and Iy using Sobel filters from HW2
- Create an empty image of 3 channels
 - Assign channel 1 to Ix^2
 - Assign channel 2 to Iy²
 - Assign channel 3 to Ix * Iy
- Compute weighted sum of neighbors
 - smooth the image with a gaussian of given sigma

TODO #1.2: response map

• For each pixel of the given structure matrix S:

- Get Ix^2 , Iy^2 and IxIy from the 3 channels

- Compute $Det(S) = Ix^2 * Iy^2 IxIy * IxIy$
- Compute $Tr(S) = Ix^2 + Iy^2$
- Compute R = Det(S) 0.06 * Tr(S) * Tr(S)

TODO #1.3: NMS

• For each pixel 'p' of the given response map R

– get value(p)

- loop over all neighboring pixels 'q' in a 2w+1 window
 - +/- w around the current pixel location
 - if value(q) > value (p), value(p) = -99999 (very low)
- set 'p' to value(p)

TODO #1.4: corner descriptors

- Given: Response map after NMS
- Initialize count; loop over each pixel
 if pixel value > threshold, increment count
- Initialize descriptor array of size 'count'
- Loop over each pixel again
 - if pixel value > threshold, create descriptor for that pixel
 - use make_descriptor() defined in panorama_helpers.c
 - add this new descriptor to the array

2. Matching descriptors

• TODO #2.1: Find best matches from descriptor array "a" to descriptor array "b"

• TODO #2.2: Eliminate duplicate matches to ensure one-to-one match between "a" and "b"

TODO #2.1: best matches

• For each descriptor 'a_r' in array 'a':

initialize min_distance and best_index

- for each descriptor 'b_s' in array 'b':
- compute L1 distance between a_r and b_s
 - sum of absolute differences
- if distance < min_distance:</p>
 - update min_distance and best_index

TODO #2.2: remove duplicates

• Initialize an array of 0s called 'seen'

- Loop over all matches:
 - if b-index of current match is ≠1 in 'seen'
 - set the corresponding value in 'seen' to 1
 - retain the match
 - else, discard the match

3. Perform RANSAC

- TODO #3.1: Implement projecting a point given a homography
- TODO #3.2: Compute inliers from an array of matches (using 3.1)

• TODO #3.3: Implement RANSAC algorithm

TODO #3.1: point projection

- Given point p, set matrix c_{3x1} = [x-coord, y-coord,1]
- Compute $M_{3x1} = H_{3x3}^* c_{3x1}$ with given Homography
- Compute x,y coordinates of a point 'q':
 - x-coord: M[0] / M[2]
 - y-coord: M[1] / M[2]
- Return point 'q'

TODO #3.2: model inliers

- Loop over each match from array of matches (starting from end):
 - project point 'p' of match using given 'H'
 - compute L2 distance between point 'q' of match and the projected point
 - if distance < given threshold:</p>
 - it is an inlier; bring match to the front of array
 - update inlier count

TODO #3.3: implement RANSAC

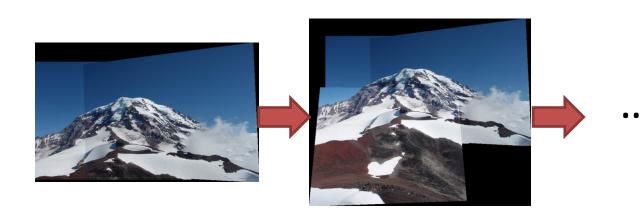
- For each iteration:
 - compute homography with 4 random matches
 - call compute_homography() with argument 4
 - if homography is empty matrix, continue
 - else compute inliers with this homography
 - if #inliers > max_inliers:
 - compute new homography with all inliers
 - update best_homography with this new homography
 - update max_inliers with #inliers computed with this new homography unless new homography is empty
 - if updated max_inliers > given cutoff: return best_homography
- Return best_homography

4. Combine images

- Project corners of image 'b' and create a big empty image 'c' to place image 'a' and projected 'b'. This part is given in the code.
- For each pixel in image 'a', get pixel value and assign it to 'c' after proper offset
- For each pixel in image 'c' within projected bounds:
 - project to image 'b' using given homography
 - get pixel value at projected location using bilinear interpolation
 - assign the value to 'c' after proper offset

5. Extra Credit

• Stitch together more than 2 images to create a big panorama. See rainier_panorama() in tryhw3.py



2 images

3 images

6. Super Extra Credit

- Implement cylindrical projection for an image
 - See lecture slides for the formula

Have Fun