Convolutional Neural Network's Applications in Skin Cancer Diagnosis

By: Shima Nofallah Advisor: Prof. Shapiro

Spring 2020

ELECTRICAL ENGINEERING

What is Melanoma?

ELECTRICAL ENGINEERING

What is Melanoma?

- > Melanoma is the most aggressive type of skin cancer.
- > Pathologists look at a skin biopsy slide and determine if its overall structure is normal, abnormal, or malignant.
- > Diagnostic errors are much more frequently than in other tissues and can lead to under- and over-diagnosis of cancer.

Figure 1. An example of Invasive Melanoma Stage T1b with Hematoxylin and Eosin stain

What is Melanoma?

Cellular entities: Nuclei Melanocyte Mitosis Structural entities: Dermis Epidermis Melanocyte nests

Diagnoses:

Benign Atypia Melanoma in situ Invasive T1a Invasive T1b

Cellular Level

ELECTRICAL ENGINEERING

Mitosis Detection

> Distinguishing **mitoses** from **normal nuclei** is a challenge.

Figure 5. Examples of a sampled Mitosis (Left) and a sampled Nuclei (Right).

Preprocessing

> Data augmentation:

- Rotations of 45, 90, 135 or 225 degrees.
- Mirroring horizontal and vertical.

> The final dataset:

- 4364 mitosis samples.
- 12640 non-mitosis samples.

> Dataset randomly split:

- Training: 60%
- Validation: 20%
- Testing: 20%

ELECTRICAL ENGINEERING

- > In recent years, with the development of fast and accessible GPUs, Convolutional Neural Networks (CNNs) have dominated computer vision research due to their impressive performance, and mitosis detection is not an exception.
- > We ran our experiment two separate times on two well-designed CNNs and compared their results:
 - 1. Efficient Spatial Pyramid of Dilated Convolutions (ESPNet)
 - 2. Densely Connected Convolutional Networks (DenseNet161)

> ESPNet

A fast and efficient convolutional neural network for high resolution inputs.

Figure 7. (Left) Comparing standard convolution and ESP. (Right) Block diagram of ESP module.

> DenseNet:

Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—the DenseNet network has L(L+1)/2 direct connections.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264				
Convolution	112×112	7×7 conv, stride 2							
Pooling	56 × 56	3×3 max pool, stride 2							
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$				
Transition Layer	56 × 56	1×1 conv							
(1)	28×28	2×2 average pool, stride 2							
Dense Block (2)	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$				
Transition Layer	28×28	1×1 conv							
(2)	14×14	2×2 average pool, stride 2							
Dense Block (3)	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 64$				
Transition Layer	14×14	1×1 conv							
(3)	7 × 7	2×2 average pool, stride 2							
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$				
Classification	1×1	7×7 global average pool							
Layer		1000D fully-connected, softmax							

Figure 8. DenseNet architectures for ImageNet.

> Hyperparameters

- Adam optimizers.
- learning rate decay schedule with step size = 5 and γ = 0.1.
- 20 epochs.
- cross-entropy loss function.

> Evaluation Metrics

- Accuracy = (TP+TN)/(TP+FP+FN+TN)
- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)

- F1 score =
$$2 \times \frac{(Precision \times Recall)}{Precision + Recall}$$

- Sensitivity = TP / (TP + FN)
- Specificity = TN / (TN + FP)

Results

ELECTRICAL ENGINEERING

Results

> Evaluation results of ESPNet and DenseNet161 on Melanoma

Metrics	ESPNet	DenseNet161
Accuracy	98.40%	98.80%
Precision	96.06%	98.37%
Recall	97.60%	96.80%
F1 Score	96.83%	97.58%
Sensitivity	97.60%	96.80%
Specificity	98.67%	99.47%
FP, FN	5,3	2, 4
TP, TN	122, 370	121,373
Training time	35m & 6s	106m & 32s

Table 1: Evaluation results of ESPNet and DenseNet161 on Melanoma

Architectural Level

ELECTRICAL ENGINEERING

Dataset

- > Our dataset comes from 240 H&E stained slides of skin biopsy images, acquired by the University of Washington School of Medicine in the MPATH study (R01 CA151306).
- > Our dataset contains five different diagnoses:
 - Benign
 Atypia
 Melanoma in Situ
 Invasive Melanoma T1a
 Invasive Melanoma T1b.

Benign vs. Invasive (1 vs. 5)

Normalized input

Gradient

Layer 5 heatmap

True Positive (Invasive)

Benign vs. Invasive (1 vs. 5)

Normalized input

Gradient

Layer 5 heatmap

True Negative (Benign)

Benign & Atypia vs. Invasive

Invasive

Latest Results

Class 1 vs. 5

- **Train**: 1: 31 slices, 5: 72 slices
- **Test**: 1: 26 slices, 5: 74 slices

- Class 1 &2 vs. 5
- Train: 1 & 2: 74 slices, 5: 72 slices
- **Test**: 1 & 2 : 75 slices, 5: 74 slices

	Accuracy	F1		Precision		Recall	
1 vs. 5	Total	1	5	1	5	1	5
	0.78	0.54	0.86	0.59	0.83	0.5	0.88
1&2 vs. 5	Total	1&2	5	1&2	5	1&2	5
	0.819	0.83	0.81	0.80	0.84	0.85	0.78

Thank you for your attention.

ELECTRICAL ENGINEERING

