
Topics in Articulated Animation
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Reading

Shoemake, “Quaternions Tutorial”
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Animation

Articulated models:

• rigid parts

• connected by joints

They can be animated by specifying the joint angles (or other
display parameters) as functions of time.
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Character Representation

Character Models are rich, complex

• hair, clothes (particle systems)

• muscles, skin (FFD’s etc.)

Focus is rigid-body Degrees of Freedom (DOFs)

• joint angles
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Simple Rigid Body Æ Skeleton

Copyright © Squaresoft 1999
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Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the
joint angles.

Dynamics: how the positions of the parts vary as a function of
applied forces.
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Key-frame animation

• Each joint specified at various key frames (not necessarily the same as other
joints)

• System does interpolation or in-betweening

Doing this well requires:

• A way of smoothly interpolating key frames: splines

• A good interactive system

• A lot of skill on the part of the animator
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Efficient Skeleton: Hierarchy

• each bone relative to parent

• easy to limit joint angles
xh,yh,zh,qh,fh,sh

qt,ft,st

qc

qf,ff

hips

r-thigh

r-calf

r-foot

left-leg ...
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Computing a Sensor Position

Forward kinematics

• uses vector-matrix multiplication

• transformation matrix is composition of all joint
transforms between sensor/effector and root

xh,yh,zh,qh,fh,sh

qt,ft,st

qc

qf,ff
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Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

1 DOF: knee1 DOF: knee 2 DOF: wrist2 DOF: wrist 3 DOF: arm3 DOF: arm
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Euler angles

An Euler angle is a rotation about a single Cartesian axis

Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

Euler-X Euler-Y Euler-Z
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Singularities

What is a singularity?

• continuous subspace of parameter space all of whose elements map to same
rotation

Why is this bad?

• induces gimbal lock - two or more axes align, results in loss of rotational
DOFs (i.e. derivatives)



13

Singularities in Action

An object whose orientation is controlled by Euler rotation XYZ(q,f,s)

(0,0,0) : Okay (0, ± 90º, 0) : X and Z axes align
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Eliminates a DOF

In this configuration, changing q (X Euler angle) and s (Z Euler angle) produce
the same result.

No way to rotate around world X axis!

Ds (Z-rot) Df (Y-rot) Dq (X-rot)
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Resulting Behavior

No applied force or other stimuli can induce
rotation about world X-axis

The object locks up!!

x
y

z
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Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations
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Other Properties of Euler Angles

Several important tasks are easy:

• interactive specification (sliders, etc.)

• joint limits

• Euclidean interpolation (Hermites, Beziers, etc.)

– May be funky for tumbling bodies

– fine for most joints
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Quaternions

But… singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

• S3 has same topology as rotation space (a sphere), so no singularities
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History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth
century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] … although beautifully ingenious, have been an unmixed evil to those who have touched
them in any way.

Thompson
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Quaternion as a 4 vector
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Axis-angle rotation as a quaternion
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Unit Quaternions
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Quaternion Product
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Quaternion Conjugate
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Quaternion Inverse
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Quaternion Rotation
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Quaternion constraints

Restricting the rotation cone

Restricting the rotation twist around an axis
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Matrix Form
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Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

“Optimal” interpolation - geodesics map to shortest paths in rotation
space

Nice calculus (corresponds to rotations)
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What Hierarchies Can and Can’t Do

Advantages:

• Reasonable control knobs

• Maintains structural constraints

Disadvantages:

• Doesn’t always give the “right” control knobs

– e.g. hand or foot position - re-rooting may help

• Can’t do closed kinematic chains (keep hand on hip)

• Other constraints: do not walk through walls
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Procedural Animation

Transformation parameters as
functions of other variables

Simple example:

• a clock with second, minute and hour
hands

• hands should rotate together

• express all the motions in terms of a
“seconds” variable

• whole clock is animated by varying the
seconds parameter
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Models as Code: draw-a-bug
void draw_bug(walk_phase_angle, xpos, ypos zpos){
pushmatrix
translate(xpos,ypos,zpos)
calculate all six sets of leg angles based on
walk phase angle.

draw bug body
for each leg:
pushmatrix
translate(leg pos relative to body)
draw_bug_leg(theta1&theta2 for that leg)
popmatrix

popmatrix
}

void draw_bug_leg(float theta1, float theta2){
glPushMatrix();
glRotatef(theta1,0,0,1);
draw_leg_segment(SEGMENT1_LENGTH)
glTranslatef(SEGMENT1_LENGTH,0,0);
glRotatef(theta2,0,0,1);
draw_leg_segment(SEGMENT2_LENGTH)
glPopMatrix();

}
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Hard Example

In the figure below, what expression would you use to calculate the
arm’s rotation angle to keep the tip on the star-shaped wheel as the
wheel rotates???

θ?


