
Topics in Articulated Animation

2

Reading

Shoemake, “Quaternions Tutorial”

3

Animation

Articulated models:

• rigid parts

• connected by joints

They can be animated by specifying the joint angles (or other
display parameters) as functions of time.

t1t1 t2t2

qiqi q ti ()q ti ()

t1t1 t2t2 4

Character Representation

Character Models are rich, complex

• hair, clothes (particle systems)

• muscles, skin (FFD’s etc.)

Focus is rigid-body Degrees of Freedom (DOFs)

• joint angles

5

Simple Rigid Body Æ Skeleton

Copyright © Squaresoft 1999

vs.vs.

6

Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the
joint angles.

Dynamics: how the positions of the parts vary as a function of
applied forces.

7

Key-frame animation

• Each joint specified at various key frames (not necessarily the same as other
joints)

• System does interpolation or in-betweening

Doing this well requires:

• A way of smoothly interpolating key frames: splines

• A good interactive system

• A lot of skill on the part of the animator

8

Efficient Skeleton: Hierarchy

• each bone relative to parent

• easy to limit joint angles
xh,yh,zh,qh,fh,sh

qt,ft,st

qc

qf,ff

hips

r-thigh

r-calf

r-foot

left-leg ...

9

Computing a Sensor Position

Forward kinematics

• uses vector-matrix multiplication

• transformation matrix is composition of all joint
transforms between sensor/effector and root

xh,yh,zh,qh,fh,sh

qt,ft,st

qc

qf,ff

vs

y

x

z

w =v sv(,)f fθ φTR()cθTR(, ,)t t tθ φ σTR(, ,) (, ,)h h h h h hx y z θ φ σT R

vsvs

10

Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

1 DOF: knee1 DOF: knee 2 DOF: wrist2 DOF: wrist 3 DOF: arm3 DOF: arm

11

Euler angles

An Euler angle is a rotation about a single Cartesian axis

Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

Euler-X Euler-Y Euler-Z

12

Singularities

What is a singularity?

• continuous subspace of parameter space all of whose elements map to same
rotation

Why is this bad?

• induces gimbal lock - two or more axes align, results in loss of rotational
DOFs (i.e. derivatives)

13

Singularities in Action

An object whose orientation is controlled by Euler rotation XYZ(q,f,s)

(0,0,0) : Okay (0, ± 90º, 0) : X and Z axes align

14

Eliminates a DOF

In this configuration, changing q (X Euler angle) and s (Z Euler angle) produce
the same result.

No way to rotate around world X axis!

Ds (Z-rot) Df (Y-rot) Dq (X-rot)

15

Resulting Behavior

No applied force or other stimuli can induce
rotation about world X-axis

The object locks up!!

x
y

z

16

Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations

17

Other Properties of Euler Angles

Several important tasks are easy:

• interactive specification (sliders, etc.)

• joint limits

• Euclidean interpolation (Hermites, Beziers, etc.)

– May be funky for tumbling bodies

– fine for most joints

18

Quaternions

But… singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

• S3 has same topology as rotation space (a sphere), so no singularities

19

History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth
century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] … although beautifully ingenious, have been an unmixed evil to those who have touched
them in any way.

Thompson

2 2 2where 1

H w x y z= + + +
= = = = −
i j k

i j k ijk

20

Quaternion as a 4 vector

w

x w

y

z

 = =

q
v

21

Axis-angle rotation as a quaternion

w

x w

y

z

 = =

q
v

θ
r

cos(/ 2)

sin(/ 2)

θ
θ

=

q
r

22

Unit Quaternions

1q

2q3q

4q

w

x

y

z

 =

q

2 2 2 2

1

1x y z w

=

+ + + =

q

(, ,)x y z

2 2 21 ()w x y z= − + +

23

Quaternion Product

1 2 1 2 1 2

1 2 1 2 2 1 1 2

w w w w

w w

− ⋅
= + + ×

v v

v v v v v v

1 2 2 1

1 2 2 1

w w w w
≠

 v v v v

24

Quaternion Conjugate

*

1 1*

1 1

* *

* * *

* * *

()

()

()

w w
= = −

=
=

+ = +

q
v v

p p

pq q p

p q p q

25

Quaternion Inverse

1 * 2/ / /()
w w

w−
= = = + ⋅ − −

q q q q v v
v v

1 1− =q q

26

Quaternion Rotation

1 0

0

() () ()

w w

w

w

w w

w w w

−
= −

⋅
= − ×

⋅ − ⋅ =
= − + ⋅ + − ×

qpq
v p v

p v

v p p v

p v p v

p pv p v v v p p v

θ
r

p

What about a quaternion product ?1 2q q

27

Quaternion constraints

Restricting the rotation cone

Restricting the rotation twist around an axis

r

θ
tan(/ 2) axis

w

q

q
θ =

2 21 cos()

2
x

y zq q
θ− = +

θ

28

Matrix Form

w

x

y

z

 =

q

2 2

2 2

2 2

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

y z xy wz xz wy

xy wz x z yz wx

xz wy yz wx x y

 − − + −
 = − − − +
 + − − −

M

29

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

“Optimal” interpolation - geodesics map to shortest paths in rotation
space

Nice calculus (corresponds to rotations)

30

What Hierarchies Can and Can’t Do

Advantages:

• Reasonable control knobs

• Maintains structural constraints

Disadvantages:

• Doesn’t always give the “right” control knobs

– e.g. hand or foot position - re-rooting may help

• Can’t do closed kinematic chains (keep hand on hip)

• Other constraints: do not walk through walls

31

Procedural Animation

Transformation parameters as
functions of other variables

Simple example:

• a clock with second, minute and hour
hands

• hands should rotate together

• express all the motions in terms of a
“seconds” variable

• whole clock is animated by varying the
seconds parameter

32

Models as Code: draw-a-bug
void draw_bug(walk_phase_angle, xpos, ypos zpos){
pushmatrix
translate(xpos,ypos,zpos)
calculate all six sets of leg angles based on
walk phase angle.

draw bug body
for each leg:
pushmatrix
translate(leg pos relative to body)
draw_bug_leg(theta1&theta2 for that leg)
popmatrix

popmatrix
}

void draw_bug_leg(float theta1, float theta2){
glPushMatrix();
glRotatef(theta1,0,0,1);
draw_leg_segment(SEGMENT1_LENGTH)
glTranslatef(SEGMENT1_LENGTH,0,0);
glRotatef(theta2,0,0,1);
draw_leg_segment(SEGMENT2_LENGTH)
glPopMatrix();

}

33

Hard Example

In the figure below, what expression would you use to calculate the
arm’s rotation angle to keep the tip on the star-shaped wheel as the
wheel rotates???

θ?

