	Reading
	Shoemake, "Quaternions Tutorial"
Tonics in Articulated Animation	
Topics in Articulated Animation	
	2

Animation

Articulated models:

- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

Character Representation

Character Models are rich, complex

- hair, clothes (particle systems)
- muscles, skin (FFD's *etc*.)

Focus is rigid-body Degrees of Freedom (DOFs)

• joint angles

Simple Rigid Body \rightarrow Skeleton

Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the joint angles.

Dynamics: how the positions of the parts vary as a function of applied forces.

Key-frame animation

- Each joint specified at various **key frames** (not necessarily the same as other joints)
- System does interpolation or **in-betweening**

Doing this well requires:

- A way of smoothly interpolating key frames: **splines**
- A good interactive system
- A lot of skill on the part of the animator

Efficient Skeleton: Hierarchy

- each bone relative to parent
- easy to limit joint angles

5

Joints = Rotations

Euler angles

An Euler angle is a rotation about a single Cartesian axis Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

11

9

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

2 DOF: wrist

3 DOF: arm

10

Singularities

What *is* a singularity?

• continuous subspace of parameter space all of whose elements map to same rotation

Why is this bad?

• induces **gimbal lock** - two or more axes align, results in loss of rotational DOFs (*i.e.* derivatives)

Singularities in Action

An object whose orientation is controlled by Euler rotation $XYZ(\theta,\phi,\sigma)$

(0,0,0) : Okay

Eliminates a DOF

In this configuration, changing θ (X Euler angle) and σ (Z Euler angle) produce the same result.

No way to rotate around world X axis!

Resulting Behavior

No applied force or other stimuli can induce rotation about world X-axis

The object locks up!!

Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations

Other Properties of Euler Angles	Quaternions
<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header>	 But singularities are unacceptable for IK, optimization Traditional solution: Use unit quaternions to represent rotations S³ has same topology as rotation space (a sphere), so no singularities
History of Quaternions Invented by Sir William Rowan Hamilton in 1843 H = w + ix + jy + kz where $i^2 = j^2 = k^2 = ijk = -1$	Quaternion as a 4 vector $\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ \end{bmatrix} = \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix}$
I still must assert that this discovery appears to me to be as important for the middle of the nineteenth	(z)

Hamilton

century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

[quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched them in any way.

Thompson

Quaternion Rotation
$\mathbf{p} = \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix} \begin{pmatrix} 0 \\ \mathbf{p} \end{pmatrix} \begin{pmatrix} w \\ -\mathbf{v} \end{pmatrix}$ $= \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix} \begin{pmatrix} \mathbf{p} \cdot \mathbf{v} \\ w \mathbf{p} - \mathbf{p} \times \mathbf{v} \end{pmatrix}$ $= \begin{pmatrix} w \mathbf{p} \cdot \mathbf{v} - w \mathbf{p} \cdot \mathbf{v} = 0 \\ w(w \mathbf{p} - \mathbf{p} \mathbf{v}) + (\mathbf{p} \cdot \mathbf{v}) \mathbf{v} + \mathbf{v}(w \mathbf{p} - \mathbf{p} \times \mathbf{v}) \end{pmatrix}$
What about a quaternion product $\mathbf{q}_1 \mathbf{q}_2$?
Matrix Form
$\mathbf{q} = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}$
$\mathbf{M} = \begin{pmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{pmatrix}$

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

"Optimal" interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)

What Hierarchies Can and Can't Do

Advantages:

- Reasonable control knobs
- Maintains structural constraints

Disadvantages:

- Doesn't always give the "right" control knobs
 - e.g. hand or foot position re-rooting may help
- Can't do closed kinematic chains (keep hand on hip)
- Other constraints: do not walk through walls

29

Procedural Animation

Transformation parameters as functions of other variables

Simple example:

- a clock with second, minute and hour hands
- hands should rotate together
- express all the motions in terms of a "seconds" variable
- whole clock is animated by varying the seconds parameter

Models as Code: draw-a-bug

```
void draw bug(walk phase angle, xpos, ypos zpos) {
 pushmatrix
 translate(xpos, ypos, zpos)
 calculate all six sets of leq angles based on
   walk phase angle.
 draw bug body
 for each leq:
   pushmatrix
   translate(leg pos relative to body)
   draw bug leg(theta1&theta2 for that leg)
   popmatrix
 popmatrix
void draw bug leg(float theta1, float theta2) {
 qlPushMatrix();
 glRotatef(theta1,0,0,1);
 draw leq seqment (SEGMENT1 LENGTH)
 glTranslatef(SEGMENT1 LENGTH,0,0);
 glRotatef(theta2, 0, 0, \overline{1});
 draw leg segment (SEGMENT2 LENGTH)
 glPopMatrix();
```

31

Hard Example

In the figure below, what expression would you use to calculate the arm's rotation angle to keep the tip on the star-shaped wheel as the wheel rotates???

