Reading

Topics in Articulated Animation

Animation

Articulated models:

- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

Character Representation

Character Models are rich, complex

- hair, clothes (particle systems)
- muscles, skin (FFD's etc.)

Focus is rigid-body Degrees of Freedom (DOFs)

- joint angles

Simple Rigid Body \rightarrow Skeleton

Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the joint angles.
Dynamics: how the positions of the parts vary as a function of applied forces.

Key-frame animation

- Each joint specified at various key frames (not necessarily the same as other joints)
- System does interpolation or in-betweening

Doing this well requires:

- A way of smoothly interpolating key frames: splines
- A good interactive system
- A lot of skill on the part of the animator

Efficient Skeleton: Hierarchy

- each bone relative to parent
- easy to limit joint angles

Joints $=$ Rotations

Computing a Sensor Position

Forward kinematics

- uses vector-matrix multiplication
- transformation matrix is composition of all joint transforms between sensor/effector and root

Euler angles

An Euler angle is a rotation about a single Cartesian axis
Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

Singularities

What is a singularity?

- continuous subspace of parameter space all of whose elements map to same rotation

Why is this bad?

- induces gimbal lock - two or more axes align, results in loss of rotational DOFs (i.e. derivatives)

Singularities in Action

An object whose orientation is controlled by Euler rotation $\mathrm{XYZ}(\theta, \phi, \sigma)$
(0,0,0) : Okay

$\left(0, \pm 90^{\circ}, 0\right): X$ and Z axes align

Resulting Behavior

No applied force or other stimuli can induce rotation about world X -axis

The object locks up!!

Eliminates a DOF

In this configuration, changing θ (X Euler angle) and σ (Z Euler angle) produce the same result.

No way to rotate around world X axis!

Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations

Other Properties of Euler Angles

Several important tasks are easy:

- interactive specification (sliders, etc.)
- joint limits
- Euclidean interpolation (Hermites, Beziers, etc.)
- May be funky for tumbling bodies
- fine for most joints

Quaternions

But... singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

- S^{3} has same topology as rotation space (a sphere), so no singularities

History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

$$
\begin{aligned}
& H=w+\mathbf{i} x+\mathbf{j} y+\mathbf{k} z \\
& \text { where } \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1
\end{aligned}
$$

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched them in any way.

Thompson

Quaternion as a 4 vector

$$
\mathbf{q}=\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\binom{w}{\mathbf{v}}
$$

Axis-angle rotation as a quaternion
$\mathbf{q}=\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)=\binom{w}{\mathbf{v}}$

$\mathbf{q}=\binom{\cos (\theta / 2)}{\sin (\theta / 2) \mathbf{r}}$

Unit Quaternions
$\mathbf{q}=\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)$

$$
\begin{gathered}
|\mathbf{q}|=1 \\
x^{2}+y^{2}+z^{2}+w^{2}=1
\end{gathered}
$$

Quaternion Conjugate

$$
\begin{aligned}
& \mathbf{q}^{*}=\binom{w_{1}}{\mathbf{v}_{1}}^{*}=\binom{w_{1}}{-\mathbf{v}_{1}} \\
& \left(\mathbf{p}^{*}\right)^{*}=\mathbf{p} \\
& (\mathbf{p q})^{*}=\mathbf{q}^{*} \mathbf{p}^{*} \\
& (\mathbf{p}+\mathbf{q})^{*}=\mathbf{p}^{*}+\mathbf{q}^{*}
\end{aligned}
$$

Quaternion Product

$$
\begin{gathered}
\binom{w_{1}}{\mathbf{v}_{1}}\binom{w_{2}}{\mathbf{v}_{2}}=\binom{w_{1} w_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2}}{w_{1} \mathbf{v}_{2}+w_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}} \\
\binom{w_{1}}{\mathbf{v}_{1}}\binom{w_{2}}{\mathbf{v}_{2}} \neq\binom{ w_{2}}{\mathbf{v}_{2}}\binom{w_{1}}{\mathbf{v}_{1}}
\end{gathered}
$$

Quaternion Inverse

$$
\begin{gathered}
\mathbf{q}^{-1} \mathbf{q}=1 \\
\mathbf{q}^{-1}=\mathbf{q}^{*} /|\mathbf{q}|=\binom{w}{-\mathbf{v}} /|\mathbf{q}|=\binom{w}{-\mathbf{v}} /\left(w^{2}+\mathbf{v} \cdot \mathbf{v}\right)
\end{gathered}
$$

Quaternion Rotation

$$
\begin{aligned}
\mathbf{q p q}^{-1} & =\binom{w}{\mathbf{v}}\binom{0}{\mathbf{p}}\binom{w}{-\mathbf{v}} \\
& =\binom{w}{\mathbf{v}}\binom{\mathbf{p} \cdot \mathbf{v}}{w \mathbf{p}-\mathbf{p} \times \mathbf{v}} \\
& =\binom{w \mathbf{p} \cdot \mathbf{v}-w \mathbf{p} \cdot \mathbf{v}=0}{w(w \mathbf{p}-\mathbf{p} \mathbf{v})+(\mathbf{p} \cdot \mathbf{v}) \mathbf{v}+\mathbf{v}(w \mathbf{p}-\mathbf{p} \times \mathbf{v})}
\end{aligned}
$$

What about a quaternion product $\mathbf{q}_{1} \mathbf{q}_{2}$?

Quaternion constraints

Restricting the rotation cone

$$
\frac{1-\cos \left(\theta_{x}\right)}{2}=q_{y}^{2}+q_{z}^{2}
$$

Restricting the rotation twist around an axis

$$
\tan (\theta / 2)=\frac{q_{a x i s}}{q_{w}}
$$

Matrix Form

$$
\mathbf{q}=\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)
$$

$$
\mathbf{M}=\left(\begin{array}{ccc}
1-2 y^{2}-2 z^{2} & 2 x y+2 w z & 2 x z-2 w y \\
2 x y-2 w z & 1-2 x^{2}-2 z^{2} & 2 y z+2 w x \\
2 x z+2 w y & 2 y z-2 w x & 1-2 x^{2}-2 y^{2}
\end{array}\right)
$$

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities
"Optimal" interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)

What Hierarchies Can and Can't Do

Advantages:

- Reasonable control knobs
- Maintains structural constraints

Disadvantages:

- Doesn't always give the "right" control knobs
- e.g. hand or foot position - re-rooting may help
- Can't do closed kinematic chains (keep hand on hip)
- Other constraints: do not walk through walls

Procedural Animation

Transformation parameters as functions of other variables

Simple example:

- a clock with second, minute and hour hands
- hands should rotate together
- express all the motions in terms of a "seconds" variable
- whole clock is animated by varying the seconds parameter

Models as Code: draw-a-bug

```
void draw_bug(walk_phase_angle, xpos, ypos zpos){
    pushmatrix
    translate (xpos,ypos, zpos)
    calculate all six sets of leg angles based on
        walk phase angle.
    draw bug body
    for each leg:
        pushmatrix
        translate(leg pos relative to body)
        draw_bug_leg(theta1&theta2 for that leg)
        popmatrix
        popmatrix
}
void draw_bug_leg(float theta1, float theta2){
    glPushMatrix()
    glRotatef(thetal,0,0,1);
    draw_leg_segment(SEGMENT1_LENGTH)
    glTrānsl\overline{atef (SEGMENT1_LENGTTH,0,0);}
    glRotatef(theta2,0,0,1) ;
    draw_leg_segment(SEGMENT2_LENGTH)
    glPopMatrix();
}
```


Hard Example

In the figure below, what expression would you use to calculate the arm's rotation angle to keep the tip on the star-shaped wheel as the wheel rotates???

